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ABSTRACT 

Exploring the attribution of sub-painted layers in overpainted artworks created with various pigments on can-
vas/wood has received limited attention. Previously this problem of underpainting inhered limitations. This study 
addresses the palimpsest-like stratigraphy of such artworks using an innovative and validated statistical approach. 
To replicate the process, painted and overpainted panels were meticulously constructed following historical recipes 
for preparation and pigment selection. Spectral data in the near-infrared (NIR) range (400-1000nm) were captured 
using a multispectral NIR camera, employing reflected light under normal illumination conditions. A total of 45 pig-
ments, representing 45 colors, were employed in the creation of three sets of overpainted layers: upper Egyptian blue, 
cadmium red, and cadmium yellow. Several parameters influencing the experimental setup were considered, includ-
ing capturing conditions and imaged areas. A normalization procedure was applied to ensure consistent capturing 
conditions across all images. The standardized set of spectral images was subjected to appropriate agglomerative hi-
erarchical clustering methods (Average Linkage, Complete Linkage, Ward Linkage, and Ward D2 Linkage), as well 
as principal component analysis (PCA) with accompanying statistical tests to validate clustering (Silhouette, Box plots, 
K-means, Wilks). Additionally, complex and entropy measures were employed. By integrating traditional statistical 
multivariate methods with modern complexity measures, consistent interpretation of the data was achieved. PCA 
combined with clustering methods enabled referencing of spectral data with the Mahalanobis connection distance, 
highlighting clusters directly associated with differences in intensity along the NIR range for each panel's segmented 
spectral cubes. It is non-destructive method and offers a unique data base for future research. The novelty of this study 
is therefore utilizing the experimental database and applying innovative corroborated mathematical techniques. This 
approach facilitated the identification of overpainted panels based on their similar NIR spectral characteristics and 
successfully identified an unknown painted panel within this initial three-color database with highly satisfactory re-
sults. 

KEYWORDS: near infrared, spectroscopy, algorithm, multispectral, statistical, imaging, hyperspectral, cam-
era, pigments 
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1. INTRODUCTION 

The spectral analysis of painted artworks, utilizing 
techniques such as multispectral and hyperspectral 
imaging, has proven valuable in the field of conserva-
tion. These non-invasive methods have yielded prom-
ising results in areas such as painting analysis, mate-
rial characterization, and digital documentation for 
the study and preservation of artworks (Casini et al., 
1999; Janssens and Van Grieken, 2004; Rosi et al., 2010; 
Daniel et al., 2017; Janssens et al., 2017; Rampazzi et 
al., 2017; Alexopoulou et al., 2019; Bratitsi et al., 2019; 
Afifi et al., 2020; Albini et al., 2020; Ali et al., 2020; 
Ashkenazi et al., 2021). Multispectral infrared imag-
ing, a simple and non-invasive technique widely em-
ployed in Cultural Heritage analysis, has been exten-
sively studied (Van Asperen de Boer, 1975; Balas et al., 
2003; Cristoforetti et al., 2006; Fischer and Kakoulli, 
2006; Vilaseca et al., 2006). 

Polyspectral cameras, including both multispectral 
and hyperspectral variants, are commonly used in re-
search, industrial applications, artificial vision, and 
online multispectral and hyperspectral imaging. Alt-
hough relatively new to the field of conservation, 
these methods have already demonstrated promising 
results in painting analysis, material characterization, 
and digital documentation (Fischer and Kakoulli, 
2006; Cosentino, 2016; Favero et al., 2017; MacDonald 
et al., 2017; Picollo et al., 2020).  

Multispectral cameras capture image data at spe-
cific frequencies across the electromagnetic spectrum, 
utilizing filters or instruments sensitive to specific 
wavelengths, including those beyond the visible spec-
trum such as infrared. Spectral imaging enables ex-
traction of additional information that the human eye 
cannot perceive. 

The literature refers to pigments as soluble dye sub-
stances or insoluble grains dispersed in powder form 
within the binding material. Natural dyes can be cate-
gorized into three groups: natural pigments from 
plants, animals, and minerals. (Pigments used in this 
study are listed in Table S0 Supplementary). 

Pigments are classified based on their source (or-
ganic or inorganic) and their chemical composition 
and physical properties, including solubility (Degano 
et al., 2009). Ancient pioneers such as Aristotle, The-
ophrastus, Claudius Ptolemy, and Pliny the Elder 
have laid the foundation and recorded past 
knowledge on pigments, including color mixing tech-
niques (Caley and Richards, 1956; Loeb and Hender-
son, 1970; Healy, 1999; Adamson, 2006; Katsaros et al., 
2009, 2010). 

Techniques used for overpainted works of art are 
being mention (Synchrotron Radiation Based XRF and 
macro-XRF and Confocal 3D Micro-XRF, IR. See: 
(Janssens et al., 2017; Bratitsi et al., 2019; Evans et al., 

2023). In fact, in irradiated art surfaces the wavelength 
range is divided into areas where one can see the sur-
face of a work of art or penetrate in depth revealing 
the hidden secrets. Wavelengths for deeper areas are 
x-rays and infrared radiation because they penetrate 
the varnish. In the case of IR the ranges include the ar-
eas from deep red at 760nm to the limits of micro-
waves but only a restrict region of it ranging from 
760nm to 2500nm can be used in the art diagnosis. IR 
is an invisible radiation, characterized by its great pen-
etration ability. Of course, all the above case studies 
involve transferring the paintings to the synchrotron 
sources laboratories and that is not always achievable. 
The limitation of Macro-XRF is that the in mobile de-
tectors the fluorescence radiation is of low energy and 
is absorbed by the dye. However, all of these scanners 
required several seconds of space per pixel, limiting 
their application to very small detail.  

Optical Coherence Tomography uses near infrared 
radiation of 700-1500nm allowing a 3D imaging of lay-
ers (Targowski and Iwanicka, 2012) provided infor-
mation about the thickness of the varnish of an image 
and signs of a forgery signature in the Portrait. Until 
recently the only techniques that could examine un-
derlayers were X-Rays and IR, but with many difficul-
ties such as in thicker layers or carbon-based pig-
ments, although nowadays are being used in many 
conservation studios allowing faster and detailed ac-
quisition. 

The exploitation of the fluorescence radiation that 
emitted by the painting during X-Ray irradiation in-
stead of the absorption was of great importance, as it 
allows a contrast not being achieved by any other tech-
nique. Confocal XRF is the only so far in situ technique 
being able to investigate under layered paintings. 

X-ray does not provide elemental analysis, nor does 
interpret underlying paint layers in cases of heavy 
metals painting such as lead or mercury, or in cases of 
overlapped by thicker layers with highly absorbent el-
ements such as zinc. Very important is the ground 
layer on which the painting surface is deposited, as its 
components may act prohibitively for the display of 
the color elements (such as zinc ground layers) (Alfeld 
et al., 2011; Noble et al., 2012; Loeff et al., 2012; Alfeld 
et al., 2013). 

However, Falco (Falco, 2009) described a process of 
modifying a commercial digital camera 8 Mpixel in IR, 
tested in a work by Lorenzo Lotto, but he has received 
many criticisms (Stork and Kossolapov, 2011). For ob-
serving underlayers, a useful tool is Short Wave IR, i.e. 
at 1000-2400 nm. Van Asperen de Boer (Van Asperen 
de Boer, 1975; Van Asperen De Boer, 1968) invented 
IR-reflectography, and investigated Early Nether-
landish Painting.  

At any rate, all the case studies refer to underdraw-
ings and not to underpainted layers, and all these 
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methods are non-portable, difficult to use and at an 
early stage. 

With the merging of traditional machine vision and 
advanced measurement technologies, complex me-
trology and imaging applications now require a 
higher number of spectral channels and application-
specific spectral filtering options to achieve high in-
spection throughputs. In this context, reliable and 
high-fidelity color and multispectral imaging play 
crucial roles in industrial quality control. 

Given the tolerances in creating a painted 
panel/icon and normalizing the obtained images us-
ing the Mu.S.I.S IR camera, the double layered colored 
pigments data were analyzed using statistical and 
complexity measures methods. 

The present study is a novel concept devised as 
methodology and sample preparation and aims to de-
termine if a random image/icon has overlays and, if 
so, identify the underlying color by fitting its spectral 
cube into the cluster groups formed from the analysis 
of samples in a simulated database of overpainted 
panels. For this purpose, three sets were created, one 
with upper Egyptian blue and the other two with cad-
mium red and cadmium yellow as the overlying col-
ors, each set comprising 45 underlying colors. Addi-
tionally, a set representing the preparation stage was 
included. Three test measurements were conducted, 
with spectral values having a ±3% distance from spe-
cific measurements. 

Statistical processing coupled with complexity 
measures is the most appropriate methodological 
manner for studying and analyzing large amounts of 
data in a scientific and reliable manner. To ensure the 
correct collection and transformation of data, it is es-

sential to formulate clear and specific research ques-
tions and objectives, considering the type of data and 
corresponding methodologies. 

This project introduces the original concept of com-
bining statistical and fractal tools and painstaking pre-
pared overpainted panels following strictly as close as 
possible traditional painting techniques to classify 
overpainting icons. The pigments used in this study 
are those commonly found in Byzantine and post-Byz-
antine portable icons created using the egg tempera 
technique, as identified through analysis and biblio-
graphic sources (Hetherington, 1989; Harley, 2001; 
Eastaugh et al., 2008; Kakabas, 2008; Parpulov et al., 
2010; Oltrogge, 2011; Mastrotheodoros and Beltsios, 
2022). Previous attempts confined to identification of 
a single surface color (pigment) via spectroscopy tech-
niques (Raman, FTIR, Multispectral etc.) and / or for 
underdrawings and support but no determination of 
the colors contained in the underneath painted layer 
has been reported.  

2. MATERIALS AND METHODS 

2.1 The Three simulated Painted Sets Painting 
panels preparation and the three sets 

The construction of painted and overpainted panels 
followed older recipes as closely as possible in terms 
of preparation and pigments used, serving as a data-
base. The aim of the project was to study overpainted 
panels and identify both the upper and underlying 
pigments, particularly in the case of overpainted 
icons. Therefore, preparatory panels were created 
with color overlays to observe the visual behavior of 
the color layers when overlapped and align with the 
traditional recipes for making Byzantine portable 
icons (Fig.S1-S3 and Table S0 Supplementary).  

(a)  
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(b)  

C) YC  
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D) RC  

E) EB  

Figure 1. Illustration of the generated single and double-layered panels. A) The five Panels displaying single layers ar-
ranged in the following horizontal order: 1. green, 2. blue, 3. white and yellow, 4. black and earthy, and 5. red pigments. B) 

the five Panels showing double layers with overpainting, organized by row of size 30x30 cm and thickness 8 mm with: 
(Upper)1. red, 2. blue, 3. green, 4. black and earthy, and (lower) 5. white and yellow pigments, C-E are NIR spectra of ana-

lyzed samples for upper color of panels C) cadmium yellow, D) cadmium red and E) Egyptian blue. 
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The panels were prepared with a layer of plaster 
and rabbit glue adhesive, followed by a drawing and 
two overpainted layers containing various pigments, 
creating the painted layers that form the images in real 
icons. 

A total of 135 panel were constructed, consisting of 
45 pigments (referred to as colors) covering the same 
45 colors, along with 45 single reference colors. 

The focus of this investigation is the study of paint-
ings on portable images created with the egg tempera 
technique. Previous studies have explored the use of 
multispectral and hyperspectral cameras or x-rays to 
reveal the underlying design in black and white. How-
ever, the ability to determine the colors present in the 
underlying painting layer remains a primary area of 
study. Therefore, the objective of this paper is to ex-
amine the possibility of predicting the underlying 
color and investigate how the underlying layer influ-
ences the visible color. 

Taking into account the tolerances involved in cre-
ating a work of art on a painted panel/icon and nor-
malizing the obtained images using the MU.S.I.S NIR 
camera (see Instrumentation and Method section be-
low), we employed a novel methodology. This ap-
proach involves a tentative base of simulated experi-
mental panels applying traditional techniques and a 
great number of overpainted combinations, statistical 
analysis using robust hierarchical statistics combined 
with new application and development of fourteen 
complexity measures, including fractal dimension, en-
tropies, and Kolmogorov complexity. These methods 
were applied to all the collected data. 

The investigation presented here delves into the 
analysis of overpainted artworks on canvas/wood, 
particularly in terms of identifying the sub-painted 
layer. This palimpsest-like stratigraphy is approached 
using a novel concept. In fact, the initial step involves 
untraining-based classification, which establishes a 
valuable correlation between spectral profiles and the 
identity of pigment materials based on available a pri-
ori knowledge. Building upon this foundation, we se-
lected a list of clustering methods, tests, and complex-
ity algorithms suitable for classifying multidimen-
sional spectral data 

2.2 The Three simulated Painted Sets 

In this section, we present the first three sets of spec-
tra. Each set corresponds to a specific underlying 
color: Egyptian blue (Set 1), cadmium red (Set 2), and 
cadmium yellow (Set 3). Table S0 (Supplementary) 
shows the 45 pigment selections used as underlying 
colors, with an additional pigment (46th) representing 
the corresponding color in the preparation stage with-
out an underlying layer. These three sets are chosen to 
demonstrate the methodology employed. 

For the 45 different samples and the 3 test samples, 
measurements were taken on 30 variables, corre-
sponding to spectral cube pixels per panel. The arbi-
trary unit of reflected light represents the calculated 
spectrum per image pixel in spectral cubes. As a result, 
the obtained data matrix is a 48-row by 30-column 
(48x30) matrix, with spectral measurements repre-
sented by Xij (i=1, …, 48, j=1, …30), denoting the meas-
ured reflected light in arbitrary units (a.u.) for the ith 
sample at the jth wavelength (nm). (Fig. 1C, D, E). 

For these three groups, we measured the Visible 
Near IR spectra (420-1000 μm), which are provided in 
Supplementary Tables S1-S3. Additionally, we de-
fined three spectra for each set as simulations of "un-
known" samples, which closely correspond to the 
measured ones within ±3% deviation. 

For example, for the Egyptian blue as the overlay 
color, we created three simulated samples based on 
sample No. 15-EGY-NTIT, which represents titanium 
nickel yellow as the underlying layer. These simulated 
samples are labeled as 15test-1, 15test-2, and 15test-3. 

Similarly, for the overlying color cadmium red, we 
generated three simulated samples based on sample 
No. 44-CR-OMBR, which represents the underlying 
raw color (ombre) shade. These simulated samples are 
labeled as test1-44, test2-44, and test3-44. 

Finally, for the overlying yellow cadmium color, the 
simulated samples are based on sample 27-YR-CAR, 
which represents carmine red as the underlying color. 
These simulated samples are labeled as test1-27, test2-
27, and test3-27. 

The data for these three sets and the nine test sam-
ples are provided in Supplementary Tables S1-S3. 

2.3 Spectroscopy Instrumentation & Measure-
ments 

The experimental set-up for capturing images 
across different regions of the spectrum involves using 
a pair of lamps to illuminate the object, filters to con-
trol the passage of radiation at specific wavelengths, 
and a suitable detector. Additionally, measures are 
taken during acquisition to correct errors related to the 
spectral distribution and photometric magnitudes of 
the light source (‘Multispectral Imaging in Reflectance 
and Photo-induced Luminescence modes: a User Manual’, 
2013). For multispectral imaging, an infrared CCD 
camera capable of detecting wavelengths up to 
1000nm and a high-resolution screen are utilized. 

The images were obtained using the Mu.S.I.S. (Mul-
tispectral Imaging System) multispectral detector, 
which is based on infrared reflectography (IRR). This 
technique takes advantage of the near-infrared and 
short-wave infrared's ability to penetrate the first sur-
face color layers, allowing the recording of the per-
centage of reflected radiation using the Kubelka-
Munk theory (Delaney et al., 2017). 
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The hyperspectral detector used is the Mu.S.I.S HS 
model 2009 (formerly Forthphotonics Hellas S.A., now 
Dysis), equipped with a CCD 1/200 Progressive Scan 
sensor (1600 x 1200 pixels, 8 bits, 15 fps) and 30 se-
lectable spectral bands spaced at 20 nm intervals 
within the range of 400 – 1000 nm for both black and 
white and color imaging. A micro NIKKOR 60mm, 
f/2.8D lens was positioned in front of the camera. 
Tungsten light sources, specifically Philips Argaphoto 
PF 319 E/44 220V/150W - E27 conical mirror lamps, 
were used to provide sufficient intensity in both the 
visible and infrared regions of the spectrum. While 
LED lamps require special arrangements for multi-
spectral techniques, their use is a subject of ongoing 
research. 

The Mu.S.I.S HS detector has the ability to sequen-
tially store spectral images (spectral cubes) and calcu-
late a full spectrum per image pixel, as well as perform 
False Color Infrared Imaging. This imaging system is 
employed for IRR, spectral cube, and FCIR imaging 
studies of icons, paintings on wood, canvas, paper, 
manuscripts, ceramics, stone surfaces, wall paintings, 
and mosaics. The experimental conditions were deter-
mined based on specific protocols of Non-Destructive 
Testing activities by Advanced Research Technologies 
for Investigation and Conservation (ARTICON Lab), 
considering optimum brightness, contrast ratio, inci-
dent lighting type and quality, and optimal magnifi-
cation for image analysis. The scanning was per-
formed within a 20 x 20 cm window grid. 

Measurements using the Mu.S.I.S HS instrumenta-
tion were carried out at the Laboratory of Non-de-
structive testing of the Department of Conservation of 
Antiquities and Works of Art, as well as at the ARTI-
CON Lab, University of West Attica under the atten-
tion of Prof. A. Alexopoulou.  

Infrared radiation has the capability to penetrate 
paint layers, reflect at the inner interface of the paint 
layer and substrate, and escape into the air. A suitable 
detection system collects this non-visible radiation 
and converts it into a black-and-white visual image 
(Balas et al., 2003).  

Infrared (IR) imaging is particularly valuable for 
canvas paintings as it reveals features beneath the pic-
torial layer, such as underdrawings, using reflected il-
lumination with the Mu.S.I.S HS hyperspectral imag-
ing detector at near-infrared wavelengths. Each image 
acquisition was performed within the spectral range 
of 420-1000 nm (Alexopoulou et al., 2019). 

However, it is crucial to ensure that the captured 
images and recorded VIR spectra provide visual infor-
mation that can be optimized and quantified for fur-
ther study and statistical processing (Wueller and Ke-
jser, 2016). 

Unforeseen factors, such as changing conditions 
throughout the day, heat from the lights during the 

shooting process, camera age, and reproducibility, can 
lead to inconsistencies in image uniformity. To ad-
dress this, daily repeated calibration with the same 
Mu.S.I.S data was conducted. Consequently, the re-
sulting gray measurement data had to be normalized, 
meaning they had to be transformed in a way that en-
sured similar gray scale values across all shots. This 
normalization process is a usual practice and was 
achieved using Adobe Photoshop CC-2019 and a 
script involved converting specific areas of each shot 
to the same level when measuring the gray tones of the 
color-checker scale, which was positioned within the 
frame of the shot and also averaging the profile of a 
panel due to possible differentiation of thickness by 
brushing the two overpainted layers (see, SUPPLE-

MENTARY: Standardization of measurements and 
Calibration). 

The spectral range of 400 - 1000 nm (VNIR, VISNIR) 
used in multispectral (MSI) and hyperspectral imag-
ing (HSI), collectively known as spectral imaging (SI), 
is non-destructive and non-invasive. These techniques 
involve capturing images using multiple bandwidths 
within the visible and near-infrared spectrum (400–
1000 nm). Over the past two decades, these methods 
have been widely applied in various fields, including 
art conservation and archaeology, for surface inspec-
tion and materials identification (Alexopoulou et al., 
2019; Fairchild, 2005; Liang, 2012). 

As when wavelengths transit from visible to the 
near-infrared region, greater penetration is achieved, 
this enables the visualization of features and condi-
tions beneath the surface. Hyperspectral imaging can 
provide a rich dataset, allowing the detection of ob-
jects of interest that are invisible to the human eye and 
facilitating materials identification based on specific 
conditions and setups (with the radiation magnitude 
at 555-560nm serving as the reference magnitude for 
maximum sensitivity of the human eye in photopic vi-
sion (Fairchild, 2005))  

The acquisition process involved continuous at-
tempts and trials to minimize changes in conditions as 
much as possible (refer to Fig. 1 (C-E) for all plots of 
the three Sets). 

2.4 Statistical methods 

In the examination of art objects with unknown 
painting materials, a crucial step is to compare the col-
lected spectra with reference spectra (training set) us-
ing spectral similarity metrics, specifically those 
known to perform well (Balas et al., 2018). Preliminary 
data analysis plays a vital role in detecting heteroge-
neity, deviations from normality, presence of outliers, 
and any underlying data structure. Statistical tools 
such as Principal Component Analysis (PCA), data 



8 I. ANDRONACHE et al. 

 

SCIENTIFIC CULTURE, Vol. 10, No 1, (2024), pp. 1-58 

transformation, and Mahalanobis distance can be em-
ployed for this purpose (Baxter, 2015; Papageorgiou, 
2020). 

In our application, we successfully detected hetero-
geneity and underlying structure in the data. The sub-
sequent analysis aimed to identify existing groups. To 
accomplish this, we implemented cluster analysis, 
specifically hierarchical methods using four different 
linkages: Average, Complete, and two modifications 
of Ward's method. The data were standardized, result-
ing in a mean of zero and variance of one for each var-
iable, and the Euclidean distance was utilized as a 
measure of distance. Details about the implementation 
of Average linkage, Complete linkage, Ward, and 
Ward-2, along with their corresponding statistical 
methods, are discussed in the SUPPLEMENTARY 
material (Choice of Statistical Methods). 

Additionally, we employed the k-means clustering 
algorithm to group the painted panels into a predeter-
mined number of clusters based on the results ob-
tained from hierarchical clustering. To assess the qual-
ity of the resulting clusters and confirm that similar 
painted panels belong to the same cluster while dis-
similar ones belong to different clusters, we utilized 
PCA, Silhouette values, Wilks test, and box plots by 
groups. Through this comprehensive analysis, distinct 
and clear results were obtained, particularly in rela-
tion to the group containing the three created test pan-
els, which exhibited significant dissimilarity from the 
remaining panels. These findings are supported by the 
aforementioned indices and coefficients, as detailed 
below. 

2.5 Complexity and Entropy Methods 

This study provides a concise description of the pa-
rameters and characteristics utilized in the analysis, 
employing six fractal algorithms, four entropy 
measures, and four complexity measures. For more 
detailed information, please refer to the correspond-
ing references. Originally developed and imple-
mented for temporal signals, these algorithms and 
methods were adapted for analyzing one-dimensional 
spectral data point values, hence the interchangeabil-
ity of terms such as "signal" and "spectrum." 

The computations were performed using the Com-
systanJ plugin package (Ahammer, 2023) 
(https://comsystan.github.io/comsystanj/) for Im-
ageJ2/Fiji (https://imagej.net/software/fiji/) 
(Schindelin et al., 2012). The ComsystanJ plugins offer 
two options for selecting partial signals or adjacent 
data point values. In this study, we chose the first op-
tion, which involves dividing the entire signal (data 
sequence) into non-overlapping subsequent boxes 
(windows). For each window, the specific complexity 
parameter is calculated individually, generating a set 

of results. Alternatively, the second option entails cre-
ating a sub-signal by combining adjacent data points 
into one box (window), resulting in heavily overlap-
ping boxes and producing as many results as there are 
data points in the signal. Although this gliding option 
increases calculation times significantly, the overlap 
does not necessarily yield superior results. 

We provide a brief overview of the 14 complexity 
and entropy measures utilized in this study: six frac-
tals (Allometric scaling dimension, Higuchi Dimen-
sion, Tug of war Dimension, Katz Dimension, Petro-
sian Dimension, Sevcik Dimension), four Entropy 
measures (Shannon Entropy, Approximate entropy, 
Sample Entropy, Permutation entropy) and four other 
complexity measures (Kolmogorov complexity, Hurst 
coefficient, Detrended fluctuation analysis DFA, Lya-
punov exponent) (See SUPLEMENTARY for details). 

The results of the applied statistical and 14 
measures were applied to support each other and 
strengthen the findings on a corroborated manner. 
Both investigate the most appropriate method for 
clustering and identification of an unknown over-
painted panel that matches the experimental data 
base. 

3. RESULTS  

The spectral data 〖X〗ij obtained in the NIR region 

for the three sets of 49 data strings (45 different data 
samples, three tests, and one with only the prepara-
tory panel) are subjected to processing using statistical 
clustering and complexity measures. Statistical analy-
sis of spectral features was conducted using IBM SPSS 
27 software and R. 

The objective of this analysis is to identify groups 
within the data and classify each pixel into one of these 
groups based on its similarity to the remaining spectra 
that comprise the validation data set. The selection of 
the optimal classification model or spectrum similar-
ity metric is typically specific to the application at 
hand. Experimental evaluation of algorithm accuracy 
is crucial since theoretical research alone cannot deter-
mine the best-performing algorithm(s). In contrast to 
earlier observations using ISODATA (a variant of K-
means), unsupervised methods, particularly the K-
means variation, have yielded satisfactory results 
(Balas et al., 2018). 

The statistical grouping aims to achieve two out-
comes: a) clusters of reflected spectra that exhibit sim-
ilarity across different pigment combinations of over-
painted panels, and b) the probability of matching the 
three tests with the expected real sample, allowing for 
a tolerance of ±3% (the three test data strings for the 
three sets are provided in the SUPPLEMENTARY). 
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3.1 Statistical analysis 

SET 1: EGYPTIAN BLUE AS OVERPAINTING  

In this section, we present the steps of the statistical 
analysis conducted on Set 1 (for additional data, refer 
to Supplementary Statistical analysis of Set 1). Similar 
analyses have been performed on the other two Sets. 
Standardization was applied to the data, resulting in a 
mean value of zero and standard deviation of one. Pre-
liminary analysis of Set 1 did not reveal any outliers 
nor normally distributed variables. Consequently, we 
proceeded with distribution-free cluster analysis 
methods, specifically hierarchical and k-means ap-
proaches. Our focus was on the group that includes 

the three test data strings. Below, we provide a de-
tailed overview of these methods and the resulting 
number of groups. 

Fig. 2A depicts the dendrogram generated using 
Ward's method for hierarchical clustering. The left-
most group, highlighted in red, comprises the 15test-
1, 15test-2, and 15test-3 samples (identified as 47, 48, 
and 49, respectively, in Supplementary Table S1) that 
were created. This cluster correctly includes No. 15, 
featuring Egyptian blue above and nickel titanium yel-
low below. Additionally, it encompasses six more 
samples with Egyptian blue as the upper layer and un-
derlying colors, namely: No. 12 (zinc white), No. 13 (ti-
tanium white), No. 16 (cadmium yellow), No. 17 (yel-
low Naples), and No. 18 (chrome yellow), which are 
characterized by yellowish and whitish hues associ-
ated with titanium yellow pigments. 
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 (B)  

 AL-A AL-B AL-C AL-D 

Figure 2. A) ward with four colored groups; notice the three tests with the “unknown” (15-EGY-NTIT) in the left red 
group. B) average linkage gives four colored groups (AL-A to AL-D); with particularly separated ones the No 12 και 13 (in 

blue). 

The cluster analysis performed in this study pro-
vides valuable insights into the influence of underly-
ing colors on the overpainted upper layer, which, in 
this case, is Egyptian blue. The created groups reveal 
distinct characteristics within the dataset. Group A 
(left, red) includes zinc and titanium whites, lead tin, 
nickel titanium, cadmium, Naples and chromium yel-
lows, along with the three tests. Group B (green) con-
sists of three blacks, sepia and iron browns, umbers 
(raw and baked), phthalo and malachite greens, and 
azurite and Prussian blues. Group C (blue) can be fur-
ther divided into two subgroups, predominantly fea-
turing earth greens, chrome, copper, cobalt, viridian 
and sap greens, golden ochre, as well as indigo blue, 
enamel, lapis, Egyptian, ultramarine and cobalt, red 
hematite, and raw and baked sienna. Finally, group D 
(green-blue) mainly encompasses red colors such as 
cadmium, cinnabar, minion, realgar, and lake, along 
with two ochres (red and yellow), lead white, yellow 
with arsenic (orpiment), cerulean blue, and the single 

color directly in preparation (ground). Therefore, the 
groups can be categorized into very light colors, very 
dark colors, blues and greens, and reds, including the 
preparation color. 

Next, the average linkage method (Fig. 2B) was ap-
plied, resulting in four groups with the following ob-
servations: 

The fourth group (AL-D) is of particular interest as 
it includes the three tests characterized by the color 
blue. Within this group, colors No12 (zinc white) and 
No13 (titanium white) serve as underpainted colors 
with Egyptian blue as the overpainted upper layer 
(AL-C). These two colors are separated from the re-
maining group, which aligns with the Ward method. 
However, the other two groups, AL-A and AL-B, dif-
fer from the previous analysis. Group AL-A comprises 
earth greens, malachite and phthalic greens, azurite 
and Prussian blues, hematite red, three blacks, sepia 
and iron browns, and both baked and raw umbers. On 
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the other hand, group AL-B, the largest group, in-
cludes chrome, copper, cobalt, viridian, and sap 
greens, golden ochre, the single color with the prepa-
ration below, lead white, yellow orpiment, both si-
enna, and almost all blues and reds, excluding those 
belonging to group AL-A (azurite, Prussian, and hem-
atite). 

The complete linkage method yields the same sam-
ple composition as the average linkage method (see 
SUPPLEMENTARY complete linkage set 1, Fig S4). 
The silhouette scores for each group, including 15 test 
samples per method (15test 1, 15test 2, and 15test 3), 
as well as the mean values for average and complete 
linkage and Ward, demonstrate comparability (refer 

to SUPPLEMENTARY Silhouette scores for Set 1, 
Figs.S5, S6). 

Set 1: Boxplots of the groups 

Based on the principal components (below) and us-
ing the 1st component which represents 71% of the to-
tal, which is very satisfactory, the box plots for the 3 
groups per method are shown below (Fig. 3). The 
group that we are interested in is the group with the 
highest scores in all graphs and is very clearly distinct 
with large differences, i.e. it presents particular char-
acteristics of tightness from the other clusters. This is 
in agreement with the conclusions from silhouette val-
ues.  

 

Figure 3. Box plot for the Ward with 3 and 4 clusters and for average και complete linkage. The First principal component 
(-10 to +10) with the lower (25%) and higher (75%) quartiles for each cluster of interest per method. 

Note the median per each cluster and method as a 
line inside each box with the box being between the 
lower and upper quartiles. Thus, the box plots identify 
the middle 50% of the respective cluster data, the me-
dian, and the extreme points. 

The 2 samples (No 12: zinc white and No 13: tita-
nium white), which belong to a differentiated group 
and are separated in some methods (average and com-
plete), are those with slightly smaller variable re-
sponse scores (red color). The 8 samples that include 
the 3 tests are in any case a distinct set characterized 
by the large value of the score; these are: 15test-1, 

15test-2, 15-test3, 16-EGY-YC, 15-EGY-LTIN, 17-EGY-
NAP and 18-EGY-CrYEL. 

Set 1: Principal Component Analysis (PCA) 

In order to get a visual representation of the cluster-
ing results, we make use of the PCA scores, a projec-
tion method that will allow us to work with a lower 
dimension than the actual which is 30. The first 2 prin-
cipal components represent 84% of the information of 
the data which is a very satisfactory percentage. (See 
Supplementary PCA of Set 1, Fig S7). Overall, all five 



12 I. ANDRONACHE et al. 

 

SCIENTIFIC CULTURE, Vol. 10, No 1, (2024), pp. 1-58 

groupings (presented in Fig.S18) exhibit a clear sepa-
ration among groups confirming that the suggested 
grouping is meaningful. It appears that the first com-
ponent is adequate to explain the variability of the 
data points. 

In the PCA graph that follows with the labels of the 
data, (Supplementary in Fig.S7, S8) it is clearly seen 
how extremely close (enclosed in the blue box) to sam-
ple 15 are the 3 tests, which are almost indistinguisha-
ble since they are the on top of the other.  

We have next implemented unsupervised K-means 
method, which classifies objects into a predetermined 
number of groups so that objects belonging to the 
same group are as uniform as possible (i.e., high intra-
class similarity), while objects in different groups are 
as different as possible (Hartigan & Wong, 1979). (Fig 

S9, Supplementary). The k-means method in the pre-
sent study with k=4, has resulted to four groups with 
the group of interest to contain exactly the same sam-
ples as in Ward’s. (Fig S10 Supplementary). 

Next is the Wilks value it is notified that the lowest 
value is given by K-means but the highest by Wards 
(SUPPLEMENTARY Wilks Set 1). 

SET 2: RED CADMIUM AS OVERPAINTING 

Next comes the second set of colors with cadmium 
red as the dominant overpainted color. In this case, 

sample No. 44 was chosen at random with the cad-
mium red overlay and raw umbra shadow underly-
ing. Three tests named test1-44, test2-44 and test3-44 
were created, the distances of their spectral values 
from the corresponding measured ones are ±3%, just 
as it was done in the previous group with Egyptian 
blue as the overpainted, when they were created the 
dendrograms for standardized data, concerning four 
methods, whose groupings are shown in Fig.5 below 
for Average Linkage (and in Supplementary Statisti-

cal Analysis Set 2 for Complete Linkage, Ward Link-
age; Ward D2 gives same result; Figs. S11, S12). 

The samples test1-44, test2-44 and test3-44 are 
grouped with the corresponding sample 44-CR-
OMBR (refers to the cadmium red overlay and raw 
umber overlay), while at the same time some other 
samples belong to the same group. All dendrograms 
consent on the group containing the 3 test samples. 
There are 16 samples in total in this group and one can 
distinguish a small subdivision for some of them. 

Following is the division for the dendrograms, for 
the Average Linkage methods into 4 groups (Fig. 4), 
and similar ones for the Complete linkage and Ward 
The group which includes the tests is highlighted in 
cyan (see, SUPPLEMENTARY Statistical analysis Set 
2, Fig S11, S12). 

 

Figure 4. The four groups in average linkage 
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If the correlation tables for the previous 4 grouping 
methods are constructed, they show absolute agree-
ment regarding the group of these 16 samples. This 
group includes the samples: "21-CR-PRU", "23-CR-
SMA", "26-CR- EGY", "32-CR-HEM", "38-CR-FUR", 
"39-CR-IVO", "40-CR-ASPH", "41-CR-FE", "42-CR-
SEP", "43-CR-OMBB", "44-CR-OMBR", "45-CR-SIB", 
"46-CR-SIR", "test1-44", "test2-44" and "test3-44". These 
are the blue enamel, Egyptian, Prussian, hematite red, 
the three blacks and all the earthy ones, which make 
up the iron and sepia browns, raw and baked ombres 
and sienna. 

The 2 subgroups that can be distinguished in all the 
dendrograms (Fig. 4 and Fig.S11, S12 SUPPLEMEN-

TARY) are: "21-CR-PRU", "39-CR-IVO", "40-CR-
ASPH" "42-CR-SEP", "43-CR-OMBB", "44-CR-OMBR", 
"45-CR-SIB", "46-CR-SIR", "test1-44", "test2- 44", "test3-
44" and "23-CR-SMA", "26-CR-EGY", "32-CR-HEM", 
"38-CR-FUR", "41-CR-FE". That is, the Prussian and 

Egyptian blue, Hematite red, Furnace black and iron 
brown are distinguished. 

The Adjusted Rand index that measures concord-
ance between the methods in terms of the result is very 
satisfactory (maximum value for complete agreement 
is 1), as shown in the values: Average with Complete: 
0.9617714, Average with Wards: 1, Average with 
Wards D2: 1, Wards with Wards D2: 1. Compatible re-
sults are obtained and by Silhouette values (See SUP-
PLEMENTARY Silhouette Set 2, Fig. S13) 

In Fig. 5 below are included the box plots of the dif-
ferent methods that were used and they concern the 
order Ward, Average and Complete Linkage (see also 
SUPPLEMENTARY Fig.S14). Based on the principal 
components and using the 1st principal component 
which represents the 63% of the total variability, the 
box plots for the groups suggested by hierarchical 
methods. 

 

Figure 5. Box plot for: Average 6 groups, Complete with 4 groups and Wards with 4 groups. 

Validation tests were carried out with several meth-
ods, for which the following interpretation is derived: 
the group with tests 1, 2 and 3 that interests us and 
which for the Complete Linkage method is the 4th in the 
row with the purple color (Fig. 5), has values less than 
average in variables of spectral wavelength values in 
nm "620", "640", "660", "680", "700", "720", "740", "760", 
"780", "800", "820 ", "840", "860", "880", "900", "920", 
"940", "960" and "980", referring to the spectrum areas. 

Even smaller values in the variables have those ob-
served in group 2, which in Fig. 5 is depicted in green 
and which consists of only 2 samples, "2-CR-MAL" 
and "20-CR-AZU" and refer to green malachite and az-
urite blue as underlying colors and which are very dif-
ferent from all others in the above areas of the spec-
trum. The average values of the 4 groups are given in 
Supplementary Table S4. 



14 I. ANDRONACHE et al. 

 

SCIENTIFIC CULTURE, Vol. 10, No 1, (2024), pp. 1-58 

The PCA plots has shown also that the two princi-
pal components represent 84% of the information of 
the data which is a very satisfactory percentage (see 
the plots of the groups located in Fig. 6A. The group 
we are interested in truly contains the tests 1, 2 and 3, 

which are the samples in the center with No 4 for the 
Wards and Complete linkage methods and No 6 for 
the Average linkage. It is definitely a distinct group 
from the rest and the grouping methods are confirmed 
here as well. 

(A)  

(Β)  

Figure 6. A) PCA groups from Ward, Average linkage and Complete linkage, B) Biplot showing the structure of the load-
ings from PCA for Comp 1 and 2. The large positive loadings of lower group of variables 520-1000nm on component 1 that 

is the most spectral part of spectra have a strong influence in this component. The upper group of vectors loadings close 
to 0 indicate that the variable of respective wavelength 400-520nm has a weak influence on the component. Note two ex-

treme outliers far left, and the respective samples around the loadings (see also alternative supportive plot in Fig. S15 
SUPPLEMENTARY). 
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In the PCA graph that follows in Fig.6B with the la-
bels of the data, it is clearly seen how extremely close 
(enclosed in the blue ellipse) to sample 44 are the 3 
tests, which are almost indistinguishable since they 
are on top of each other, while it can also be seen why 
2 sub-groups were proposed in the central group, 
those with a negative 2nd principal component 44, 45, 
test1, test2, test3, 21, 40, 46, 39, 43 and those with a pos-
itive , the 26, 32, 23, 41, 38. Next the clustering for data 
set with k-means algorithm gives exactly the same 
clustering that includes all 3 tests, just like with den-
drograms. (SUPPLEMENTARY Fig. S16). The calcu-
lated Adjusted Rand index between the three resulting 
groups of the heirarchical methods and the k-means 
ranges between 0.83 and 0.96, indicating a very good 
agreement. 

SET 3: CADMIUM YELLOW OVERPAINTING 

This section presents the final set of data (Set 3) in 
the experimental procedure aimed at demonstrating 
the grouping of tests with their corresponding meas-
ured samples. In this particular case, cadmium yellow 
was chosen as the upper color, encompassing various 
underlying colors as well as the three tests created for 
this purpose. Sample No. 27-YC-CAR, randomly se-
lected, represents the combination of cadmium yellow 
and carmine red as the underlying colors. Three tests, 
named test1-27, test2-27, and test3-27, were created, 
with their spectral values showing a deviation of ±3% 
from the corresponding measured values. Dendro-
grams were constructed for the standardized data us-
ing four methods. Additionally, sample No. 46 repre-
sents a single color with a preparatory (ground) back-
ground. 

Figure 8A illustrates the dendrogram created using 
the Average Linkage method (also refer to Fig S35). 
Notably, sample No. 38-YC-MAL, which features an 
underlying red malachite color, appears to be signifi-
cantly distant from all other samples, indicating a pos-
sible outlier. This observation is further supported by 
PCA analysis and the calculation of Mahalanobis dis-
tance for this sample (refer to Supplementary Statisti-
cal analysis of set 3, PCA, Fig.S17). 

Sample 38, characterized by a yellow upper color, 
exhibits an extreme position and deviates from the av-

erage values of Set 3 starting from 520 nm, with a sig-
nificant difference observed after 840 nm. It appears 
that the green (malachite) underlying pigment exhib-
its distinct infrared absorption compared to other col-
ors. The presence of outliers adversely affects most 
clustering techniques; therefore, we exclude this sam-
ple from further analysis. 

We repeat the analysis for the remaining 48 samples 
and hierarchical clustering for the three linkages (the 
Wards D2 is similar to Wards) lead to dendrograms 
presented in Figure 8B (see also SUPPLEMENTARY 

Fig.S18, S19). A first comment concerns the fact that in 
all methods, the 3 test samples are grouped with the 
corresponding sample from which they were created, 
that of No 27. 

The 3 test samples "test1-27", "test2-27" and "test3-
27" are grouped (right part of green group) with the 
samples 24 -YC-ROCH", 45-YC-GOLDOCH, "27-YR-
CAR. This subgroup relates to the next (left) one com-
prised by "9-YC-ORP", "12-YC-IND", "16-YC-EGY", 
"21-YC-MIN", "23-YC-YOCH", ", "26-YC-LAK", ", "39-
YC-CrGRE", "40-YC-CuGR", "42-YC-VIR", "44-YC -
SAP", This group is augmented with samples "13-YC-
YSM", "15-YC-LAP", "17-YC-ULT", "18-YC-CoBL", 
"22-YC-HEM", "32-YC-SEP", "35-YC-SIEB", "36-YC-
SIER", "37-YC-EAR" and "41-YC-CoGRE" for Com-
plete and Average Linkage.  

In fact, examining the underlie colors of upper yel-
low cadmium, to which these samples pertain, the first 
sub-group includes the carmine, lacquer, orpiment, 
and minion reds, the Indian and Egyptian blues, the 
three red ochres, yellow and gold, and the greens of 
chrome, copper, viridian and sap. The second sub-
group concerns blue enamel, lapis lazuli, ultramarine, 
cobalt, hematite red, earth and cobalt greens, raw and 
baked sienna and sepia brown. The three colors that 
work differently in the Complete method are Egyptian 
Blue, Chrome Green, and Copper (regarding numeri-
cal and labels referred to samples see Fig. 8B but also 
Tables S2-S4 SUPPLEMENTARY). 

Below are the box plots of the groups that concern 
us and can be seen in Fig.9 and are shown in bright 
green in the average and wards method and blue in 
Complete. In all cases one can conclude that the sug-
gested groups are well separated. 
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(A)  

(B)  

Figure 8. A) Dendrograms for Average Linkage, B) alternative presentation of average Linkage in 4 colored groups 
excluding No 38. 
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Figure 9. Box plot of average και complete and Ward’s linkage. 

The grouping of all samples of the set 3 is also con-
firmed by the Silhouette values for each group per method 
as well as their average value and a graphical representa-
tion of the clustering results using PCA as a projection 
method (see Supplementary Fig. S20 and S21).  

A biplot of the samples in the first two principal 
components (the 2 first explain 83% of the total varia-
bility) is shown in Figure 10, where it appears that the 

test samples are indeed very close to No 27 and all that 
belong to the same group. The 3 test samples that con-
cern us are enclosed in the blue circle (see also SUP-

PLEMENTARY Fig.S22), a biplot on the first two PCs 
with the distinct position of the 3 tests. 

Finally, the k-Means method below also agrees with 
the group containing the 3 tests close to the expected 
No 27 (see SUPPLEMENTARY Fig.S23).  

 

Figure 10. A biplot on the first two PCs. The 3 tests are enclosed in the blue circle 
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3.2 COMPLEXITY ANALYSIS 

In the analysis of spectral measurements for the 
three sets, complexity measures were utilized and ap-
plied to the entire dataset. The previously mentioned 
fourteen (14) complexity measures were calculated, 
yielding the following results. 

The measurements were conducted on both the orig-
inal data and the pre-processed data, which underwent 
interpolation and subsequent boxing. The following 
figures display the plots generated from these measure-
ments for each of the three-color sets (Set 1, Set 2, and 
Set 3). The plots illustrate the complex indices per 
standardization, with and without interpolation. 

To expand the set of "wavelength" values from 420 
to 1000 nm, we performed linear interpolation on the 
"near IR values." Linear interpolation assumes a linear 
change in y for a given change in x. We employed the 
INDEX and MATCH functions in Excel to achieve the 
interpolation. The original 30 "x" values spanned from 
420 to 1000 nm with a 20 nm increment. By reducing 
the increment of the "x" data sequence, we expanded 
it to 183 data points. Subsequently, appropriate Excel 
formulas were used to calculate interpolated "y" data 
for each "x" value. 

In the plots, the three test samples and the measured 
sample are indicated by two red circles. An arbitrarily 
drawn red horizontal line denotes the position of the 
four samples of interest (the three tests and the meas-
ured sample) that align with the respective index in re-
lation to the other samples in the sets. In these plots, the 
three tests are always plotted at the far right as the three 
last points, while the measured sample shifts its posi-
tion. Plots without red circles or lines indicate a lack of 
alignment and corresponding index matching. 

Representative figures of the most suitable algo-
rithms are presented in Fig. 11 for Set 1 (with upper 
pigment Egyptian blue, 1A-1E), Fig. 11 for Set 2 (with 
red cadmium upper color, 1F-1J), and Fig. 11 (1K, 1L) 
for Set 3 (with yellow cadmium upper color). All other 
plots that did not meet the desired criteria are pro-
vided in the SUPPLEMENTARY Complex Analysis 
indices plots to ensure reproducibility and evidence of 
proof for researchers. 

When analyzing cadmium yellow, the three tests in 
the Allometric Scaling Dimension (without interpola-
tion) are close to each other but slightly distant from the 
measured sample. This pattern is also observed in the 
Shannon Entropy dimension, both with and without in-
terpolation. However, in the Tug of War dimension, alt-
hough the three tests are close to each other, they are 
significantly distant from the measured sample. 

For cadmium red, both in the Allometric Scaling Di-
mension (with and without interpolation), all three 

tests and the corresponding measured sample are very 
close to each other. However, in the case of interpola-
tion, this dimension makes it easier to identify the real 
sample compared to other colors. Similar results are 
observed in the Hurst coefficient without interpola-
tion. In the Tug of War dimension, the three tests are 
close to each other but quite far from the measured 
sample. The same applies to the Lyapunov exponent 
with interpolation, but their position in the database 
plot, along with a few other samples including the 
"unknown" sample, can potentially provide a more ac-
curate identification of the measured sample. 

Regarding Egyptian blue, in the Allometric Scaling 
Dimension (with and without interpolation), the three 
tests are very close to each other and also very close to 
the measured sample. Particularly, the three tests of 
sample 15-EGY-NTIT (nickel-titanium) in the original 
data overlap with seven others, which differ from the 
red line within the standard deviation of the three 
tests. These samples are 13-EGY-TIT, 14-EGY-LTIN, 
15-EGY-NTIT, 25-EGY-LAP, 27-EGY-ULT, 28-EGY-
CoBL, 30-EGY-CIN, and 43-EGY-OMBR. However, in 
the interpolated data, the closest samples are 1-EGY-
EAR, 8-EGY-SAP, 14-EGY-LTIN, 15-EGY-LTIT, 21-
EGY-PRU, and 22-EGY-IND. In the Higuchi Dimen-
sion, the three tests are very close to each other but rel-
atively distant from the measured sample. Without in-
terpolation, they are further away from the measured 
sample compared to the other two tests. Both Sample 
Entropy (with and without interpolation) and Shan-
non Entropy (without interpolation) show the three 
tests and the measured sample to be very close to each 
other. However, in Shannon Entropy (without inter-
polation), the three tests are very distant from the 
measured sample. Similar observations are made for 
the Higuchi Dimension. In the Katz dimension with 
subsequent boxes, the three tests are close to each 
other and also to the measured sample, but they are 
farther away in the case of interpolation. The Sevcik 
dimension yields good results in all cases, and in the 
interpolated data, Sample Entropy performs well. The 
Detrended Fluctuation analysis for the Egyptian Blue 
without interpolation also provides satisfactory re-
sults. The Kolmogorov complexity with ZLIB com-
pression demonstrates close values between the three 
tests and sample No. 15, but within a 3% error, it in-
cludes a larger number of possible sample data (18) 
compared to other methods. The Kolmogorov com-
plexity with GZIB compression includes slightly fewer 
possible samples. The results of all other indices for 
the three sets are not compatible and are rejected (refer 
to Supplementary material Figs S24-S61 and at the 
end p.56 the computing steps of the complexity 
measures indices). 
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Figure 11. Egyptian blue surface color. Complexity measures for the original and interpolated data. A) Allometric Scaling 
Dimension without and with interpolation, B) Katz Dimension without and with interpolation and with subsequent 

boxes. Tests Correspond to: original, interpolation and Subsequent boxes; C) Sevcik Dimension without interpolation and 
with subsequent boxes; D) Sample Entropy without and with interpolation, (E) Detrended fluctuation analysis (DFA), 
original data. Red marks the three tests and the measured “unknown”. Red Cadmium: F) Allometric Scaling Dimension 

without and with interpolation; G) Hurst coefficient without interpolation; H) Lyapunov with interpolation, I) 
Detrended fluctuation analysis, original, J) Detrended fluctuation Analysis interpolated; Cadmium yellow: K) Allometric 

without interpolation, L) Shannon entropy without and with interpolation 
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In general, the most suitable complex dimension for 
all three cases is the Allometric Scaling Dimension. 
However, the three tests are slightly distant (~5%) 
from the corresponding measured sample and the few 
mentioned above, as illustrated in Figures 11-12 with 
red circles and lines. 

Overall, analyzing short data (original data) versus 
long data (interpolated) using fractal, entropy, and 
complexity measures can yield similar but not identi-
cal results. 

4. DISCUSSION OF THE RESULTS 

The present investigation demonstrates the effec-
tive separation of painted surfaces based on their color 
appearance as a result of the artist’s technique. In each 
painting (icons in the present study) the artist pro-
cesses the pigments used on a specially prepared sup-
port and substrate in order to reproduce the percep-
tion of color in accordance with his technique and 
color visual sense. The wide use of inorganic and or-
ganic pigments ultimately produces the effect we rec-
ognize in a painted image. The color surfaces vary so 
that a wide spectrum of colors exists. In addition, sev-
eral times the original painted surfaces are over-
painted. Of particular interest is the artistic rendering 
of color in the work. Which means that it is interesting 
to investigate the pigments used in a painted layer and 
also the combined visual effect in painted works. In 
the present investigation, for the first time, we con-
struct a wide variety of color surfaces on panels as a 
data base and demonstrate that NIR spectral emis-
sions can be grouped into similar or closest colors by 
applying statistical hierarchical clustering with ac-
companying group validity tests, which results are 
combined by the applied complexity and entropy 
measures.  

In this way, the spectral cube of a painting in the 
spectral range 420-1000 nm can be identified with the 
closest sample of the painting surface data base (plain 
or overpainted) and the color or the combination of 
pigments that render the color can be identified. 

This concept has been applied to three sets of 135 
painted panels and were thoroughly processed, out of 
2070 experimentally home-made painted panels. 

The statistical analysis for this set led to quite clear 
results regarding the group containing the 3 tests gen-
erated, as it is very different from the rest generated, 
and this is supported in many ways by statistical tests. 

The 1st set with Egyptian blue as the surface color: 
The three tests clearly group together with 15-EGY-
NTIT which is the metric they were created from, but 

also with four pigments: titanium zinc white, lead tin 
yellow, Naples and chromium; however, zinc and ti-
tanium white could be considered as forming a sepa-
rate cluster. It is of interest the obtained result which 
revealed an increased probability of locating the un-
known color among many in the database, and it is 
limited to the correct sample or at most one more (Ta-
ble S1). Thus, for the Set 1 the 3 tests (random values 
within 3% of 15-EGY-NTIT) of original and interpo-
lated strings together with the No 15-ΕGY-ΝΤΙΤ are a 
common aspect in both statistical groupings concerning 
the cluster with those colors that group together with 
the 3 tests and the “unknown” No 15 sample, and 
those groups from Allometric, Katz, Sevcic and Sample 
entropy. In all five methods used the three tests, group 
together with the No 15 (as should be expected) as a 
common entry and the No 14. This way applying these 
methods and making a simple clustering any un-
known color should correspond between a choice of 
two to be the right one. In fact, the No 14-EGY-LTIN is 
next in resemblance being close to No 15 on the two 
colors used as underlie the nickel-titanium and lead 
tin, both being yellow pigments. However, we believe 
that when a sample is present in all methods of origi-
nal and interpolated data this should be attributed to 
the unknown; in our case the No 15 that is the antici-
pated too. The use of interpolated string data only 
strengthens the result in the Allometry and statistics 
(dendrograms and PCA) including also the No 14-
EGY-LTIN. Hence the combination of fractal and sta-
tistical results increases the probability of locating the 
unknown overpainted panel among many in the data-
base. 

The 2nd set with red cadmium red surface color: The 
three tests (44-test1, 2, 3) clearly group together with 
44-CR-OMBR (ombre raw) which is the metric they 
were created from, but also with underlie pigments of 
sienna raw (a yellowish brown), ivory (a pale white) 
and Prussian (bluish) could be considered as forming 
a separate cluster ("21-CR-PRU", "39-CR-IVO", "40-
CR-ASPH", "42-CR-SEP", "43-CR-OMBB", "44-CR-
OMBR", "45-CR-SIB", "46-CR-SIR", "test1-44", "test2- 
44", "test3-44"). In this set with red surface color the 
Allometric Scaling Dimension, the Hurst coefficient with-
out interpolation, the Tug of war dimension, and the 
Lyapunov exponent with interpolation seem to ap-
proach a highly probable result giving to the three 
tests a number of probable colors. (See Table 1B). 
However, applying the 4 methods most appropriate 
for red upper surface all pinpoint as common the No 
44 which is the right one. 
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Table 1. A) Egyptian blue. The samples (noted in x) of respective methods closest to No 15 and others within < 3% varia-
tion, including the three tests. Note the No 14-EGY-LTIN is next in resemblance being close to No 15. Both these two col-
ors have used as underlie the nickel-titanium and lead tin, both being yellow pigments. At any rate, only the sample pre-
sent in all methods of original and interpolated data should be attributed to the unknown, in our case the No 15, that is 

the anticipated too. B) Red chromium and C) Yellow chromium the surface color. The red cross represents the „unknown” 
sample which lies also within ±3% of the three tests and other samples per method. 

(A) 
Sample No Staτ. All. 

O. 
All. 

I. 
Katz 

O. 
Katz 

I. 
Katz 

S. 
Sev. 
O. 

Sev. 
I. 

SampEn. 
O. 

SampEn. 
I. 

DFA 
O. 

KC – ZLIB 
O. 

1  
 

 X X         

2             

3             

4             

5    X        X 

6         X   X 

7            X 

8   X         X 

9             

10     X X    X   

11     X X  X  X  X 

12 X       X  X  X 

13 X X      X X   X 

14 X X X X X X X X  X  X 

15 X X X X X X X X X X X X 

16 X   X X X X   X  X 

17 X           X 

18 X           X 

19    X     X    

20        X     

21   X        X  

22   X          

23             

24    X X X       

25    X        X 

26  X  X         

27  X          X 

28  X          X 

29             

30             

31         X   X 

32             

33             

34            X 

35             

36             

37             

38  X         X  

39             

40    X         

41    X    X     

42     X     X X  

43  X           

44       X  X    

45          X  X 

46          X   
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(B & C) 
3b red  3c yellow 

Sample No Statistics All. 
O. 

All. 
I. 

Hurst 
O. 

Lyap 
I. 

DFA 
O. 

DFA. 
I. 

 Statistics All. 
I. 

Sha. 
O. 

Sha. 
I. 

1            

2  X X X X    X  X 

3    X     X   

4         X   

5  X          

6         X   

7  X          

8  X          

9        X    

10  X          

11  X   X       

12  X          

13         X   

14            

15  X       X   

16  X      X    

17            

18          X  

19           X 

20    X        

21 X X X X      X  

22            

23  X   X   X X   

24        X    

25     X       

26    X X       

27        X X X X 

28           X 

29            

30            

31  X       X   

32  X  X        

33  X          

34         X   

35            

36          X X 

37  X          

38  X X X  X X     

39 X  X X    X   X 

40 X X     X X    

41  X X    X     

42 X  X      X X X 

43 X    X X      

44 X X X X X X X     

45 X X  X    X    

46 X X       X   

 
The 3rd set with yellow cadmium as surface color: 

The three tests (27-test1, 2, 3) clearly group together 
with 27-YR-CAR (carmine) which is the metric they 
were created from, but also with underlie pigments of 
45-YC-GoldOCHRE, 24-YC-ROCHRE (red ochre), 9-
YC-ORPm(orpiment), 23-YC-YOCH (yellow ochre), 
16-YC-EGY (Egyptian blue), 39-YC-CrORE (chro-
mium green), and 40-YC-CuGR (copper green), which 

could be considered as forming a separate cluster. The 
3 methods applied (statistical, Allometric dimension 
and Shannon) indicate as common color No 27 which 
is the anticipated. 

Table 1C gives the groups of various methods for 
yellow surface color within which the three tests fall 
in relation to No.27. 
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In the complexity measures some of the different 
processing methods gave respectively the anticipated 
result for 8 of them: the Allometric Scaling Dimension 

and the Sample Entropy, the Katz dimension with Subse-
quent boxes and the Sevcik dimension also gives a 
good result in all its cases, and in the interpolated the 
Sample entropy. Due to the algorithmic characteristics 
that process the data it is found that specific complex-
ity measures identify the right panel of a particular-
colored surface, even beyond the single layer with un-
derlie a ground preparatory. These measures together 
with statistical elaboration provide a common color 
which as it is found is the right data set. That is an un-
known overpainted panel can be identified with suc-
cess. 

5. CONCLUSION 

Spectral data measured by a multispectral NIR cam-
era in the range 400-1000nm and in 30 equally spaced 
spectral cubes were processed by statistical hierar-
chical methods and fractal algorithms and complexity 
measures. Overpainted artworks of two painted layers 
made in the laboratory and following traditional tech-
niques during Byzantine times created a data base in 
total 45 pigments (named as colors), covering the same 
45 colors hence producing 2025 combinations plus 45 
single colors that act as reference points; a total of 2070 
plates, were constructed. It was shown that present 
methodology enhanced the previous ones by identify-
ing icons with overpainted layers using Mu.S.I.S NIR 
camera and analyzing the spectral data by a new con-
cept. The novelty of this study is therefore suitable for 
implementation in many panel and mural painting. 

Such a multispectral overpainted artworks using 
various pigments on canvas/wood have not been in-
vestigated in depth concerning possible attribution of 
a sub-painted layer. This palimpsest-like painted pan-
els have been approached here with the novel corrob-
orated statistical concept and fractal algorithms. Three 

sets each one with three different upper pigment/col-
ors; Egyptian blue, red (cadmium), and yellow (cad-
mium) respectively, were fully exploited. 

A detailed statistical clustering supported by statis-
tical tests (average, complete and ward linkage, K-
means, Wilks test, Silhouettes, PCA) was applied. The 
resulted clusters of overpainted panels with certain 
pigments were supported by statistical tests. Three to 
five groups of overpainted panels were found for the 
three sets. 

In addition, a thorough investigation by fractal, 
complexity and entropy algorithms were applied on 
three processing data (original, interpolated, subse-
quent boxes). The three tests (created by a metric sam-
ple by random process but within a 3% variation per 
each of the 30 data values) were compared with the 
metric sample and the analysis have proved this antic-
ipating matching. The matching unavoidably in-
cluded some other overpainted two pigment layers 
test panels. This result may be explained as due to the 
variable painted surfaces by the non-uniform painting 
of the artist, and uneven surfaces and this uncertainty 
needs a further future investigation. Αllometric 
method followed by the Sample Entropy, the Katz di-
mension, the Sevcik dimension, the Shannon, the DFA 
and the Sample entropy excluding the majority of the 
nine algorithms were found appropriate to use. The 
convergence of all these algorithms to the same or may 
be additional sample, is a criterion of attributing to 
that sample the “unknown”. Thus, the methodology 
and methods of complexity in coordination with the 
hierarchical clustering can be used in the future (work 
in progress) for similar investigations of overlapping 
paintings. Hence, an unknown painted work can be 
compared to our present data base applying the re-
spective methods per surface color and may identify 
the probable color which proved to be the anticipated 
one.  
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SUPPLEMENTARY MATERIAL 

 

INTRODUCTION 

Pigments are classified based on their source (organic or inor-
ganic) and their chemical composition and physical properties, in-
cluding solubility (Degano et al., 2009). Ancient pioneers such as Ar-
istotle, Theophrastus, Claudius Ptolemy, and Pliny the Elder have 
laid the foundation and recorded past knowledge on pigments, in-
cluding color mixing techniques (Adamson, 2006; Caley and Rich-
ards, 1956; Loeb and Henderson, 1970; Healy, 1999; Katsaros et al., 
2009, 2010). 

Extensive analysis of Byzantine and post-Byzantine icon cases, 
in pigments and stratigraphy, has been conducted using various 
techniques such as XRF, SEM/EDX, μRaman, FTIR, HPLC, and ear-
lier versions of multispectral imaging systems (Daniilia et al., 2008; 
Valianou et al., 2011; Iordanidis et al., 2013; Gehad et al., 2015; Alex-
opoulou and Kaminari, 2008; Janssens et al., 2017; Khasawneh and 
Elserogy, 2019; Karydis et al., 2019; Mastrotheodoros and Beltsios, 
2022; Lazidou et al., 2018; Karapanagiotis et al., 2013; Sotiropoulou 
et al., 2010; Karapanagiotis et al., 2007). Previous studies have em-
ployed MU.S.I.S system and its earlier versions, combining a hyper-
spectral camera with innovative electro-optic tunable filters, along-
side spectral analysis and classification algorithms. The Maximum 
Likelihood algorithm demonstrated excellent performance in iden-
tifying and differentiating single pigments with similar hues but dif-
ferent chemical compositions, achieving accuracies ranging from 
80.3% to 99.7% when used to analyze materials used by El Greco 
and his workshop (Balas et al., 2018; Theodoropoulou and Tsairis, 
2000). 

Legnaioli et al. (Legnaioli et al., 2013a, 2013b) explored the appli-
cation of various Blind Source Separation algorithms with a multis-
pectral camera (Chroma C4) to enhance hidden patterns and re-
trieve hidden information in paintings. They also employed a sim-
pler method known as the "false-colors" technique, which involved 
selecting three channels from the multispectral set and superimpos-
ing them to create a false-color image, combining infrared, red, blue, 
and green channels. 

Underdrawings can be better examined in paintings before 16th-
century, as they contain highly reflective grounds with black car-
bon-based underdrawings that absorb strongly the infrared. Also, 
the availability of the detectors is now wide and of course extends 
to multi-spectral and hyper-spectral imaging (Daniilia et al., 2008; 
Valianou et al., 2011; Iordanidis et al., 2013; Gehad et al., 2015; Alex-
opoulou and Kaminari, 2008; Janssens et al., 2017; Khasawneh and 
Elserogy, 2019; Karydis et al., 2019; Mastrotheodoros and Beltsios, 
2022). 

Given the tolerances in creating a painted panel/icon and nor-
malizing the obtained images using the Mu.S.I.S IR camera, the dou-
ble layered colored pigments data were analyzed using statistical 
and complexity measures methods. 

The present study is for first time devised as methodology and 
sample preparation and aims to determine if a random image/icon 
has overlays and, if so, identify the underlying color by fitting its 
spectral cube into the cluster groups formed from the analysis of 
samples in a simulated database of overpainted panels. For this pur-
pose, three sets were created, one with upper Egyptian blue and the 
other two with cadmium red and cadmium yellow as the overlying 
colors, each set comprising 45 underlying colors. Additionally, a set 
representing the preparation stage was included. Three test meas-
urements were conducted, with spectral values having a ±3% dis-
tance from specific measurements. 

The objective of this analysis is to identify groups within the data 
and classify each pixel into one of these groups based on its similar-
ity to the remaining spectra that comprise the validation data set. 
The selection of the optimal classification model or spectrum simi-
larity metric is typically specific to the application at hand. Experi-
mental evaluation of algorithm accuracy is crucial since theoretical 
research alone cannot determine the best-performing algorithm(s). 
In contrast to earlier observations using ISODATA (a variant of K-
means), unsupervised methods, particularly the K-means variation, 
have yielded satisfactory results (Balas et al., 2018). 

Because wall murals and portable icons were functional artifacts 
of devotion, they were overpainted anytime they were damaged 
and no longer recognizable. In rare cases, complete paintings were 
repainted with previous iconographies at the desire of the owner or 
because various eras enforced different norms. The issue of over-
painting with meticulous experimental set up of two layered 
painted panels involves particular sample preparation, taking 
measurements in near IR by a standardized camera of the spectral 
data (400-1000μm) analyzed and collecting many spectral data from 
applied statistical hierarchical techniques and complexity measures. 
Below additional data and information is given beyond the material 
in the main article.  

Sample preparation 

It was important for the samples to adhere to the standards of 
creating experimental paintings for infrared detection (Moutsatsou 
& Alexopoulou 2014, p.3-9) and also align with the traditional reci-
pes for making Byzantine portable icons using the egg tempera tech-
nique, while including the pigments commonly used by Byzantine 
and post-Byzantine hagiographers (Taylor, 1979) (see Table S0). 
Note that e.g. titanium white, zinc white have been only scarcely 
reported in the byzantine and post-byzantine palette (Biligi-Genc et 
al, 2023; Mastrotheodoros et al., 2023; Eastaugh et al., 2008)  

TABLE S0 The pigments (colors) used for the painted layers.  

White  Black  Yellow  Red  Blue Green  Earthen  

White lead Carbon black Yellow lead tin Cadmium red Blue azurite Earth green Golden ochres 

Zinc white Black ivory Nickel titanium 
yellow 

Red cinnabar Blue of Prussia Malachite Green Ochres yellow 

Titanium 
White 

Black asphalt Cadmium yellow Red minion Indigo blue Chrome Green Time red 

  Naples Yellow Red hematite Blue Enamel Copper green Ombre raw 

  Chrome yellow Red realgar Cerulean Blue Cobalt Green Ombra baked 

  Yellow Orpiment Red Lake Blue Lapis Lazulli Viridian Green Sienna raw 

   Carmine red Egyptian blue Phthalate green Baked Sienna 

    Ultramarine blue Green Sap Sepia brown 

    Cobalt blue  Iron brown 
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The experimental samples comprised a total of 30 panels made 
from marine plywood, prepared with plaster and the adhesive sub-
stance rabbit glue, and divided into 81 squares each (Dardes and 
Rothe, 1998; Berns, 2005). The organic medium used was egg yolk, 
as required by the traditional egg tempera technique, while a mul-
tispectral study was also conducted (Arroyo et al., 2008). The panel 
plates were 30x30 cm in size and 8 mm thick. The wood panels were 
lightly sanded initially to smoothen imperfections, ensuring the use 
of fine sandpaper to prevent the removal of wood fibers. There was 
a total of 30 panel plates, 5 of which consisted of 45 single col-
ors/layers directly on the preparation layer (see Fig. S1), while the 
remaining 25 panels contained overpainted layers with 81 over-
painted stripes or small squares (refer to Fig. 1a-d of main article). 

The materials chosen for the preparatory drafts represented the five 
most common pigments used in traditional hagiography and were 
also selected based on the researchers' previous work on prototype 
construction (Walmsley et al., 1994; Saunders et al., 2006). 

These panel are in total of 30. The 5 of them consist of 45 single 
colors/layers (5 panels by 9 stripes of single pigments per panel) 
directly on the preparation layer (see Fig.S1). 

Data derivation and description 

The data of these three sets and the 9 test samples are given in 
Tables S1-S3. 

 

Figure S1. The 5 panels with single layer pigments on the preparation with: 1. green, 2. blue 3. white and yellow, 4. black and earthy and 
5. red pigments are shown in order.  

 

CALIBRATION, CAMERA SETTING AND STANDARDIZA-
TION  

Calibration 

Reflectance spectra calculations that are independent of ambient 
light conditions were achieved through calibration. An experi-
mental procedure was conducted to determine the camera's error 
and highlight the significance of standardization in data measure-
ments (see below). Subsequently, measurements were taken at the 
same points using the corresponding normalized image (as de-
scribed below) to observe the resulting differences and demonstrate 
the efficacy of the normalization process. 

The camera produced a spectral cube through a series of 30 shots 
covering the spectrum range of 420-1000 nm with 20 nm intervals. 
This spectral cube was loaded into the camera program, allowing 
for both graphical representation and numerical data of the spec-
trum. 

Standardization of measurements 

The photos were continuous after several trials and attempts so 
that there was, as much as possible, no change in the setting and 
capturing conditions. At the beginning of the shooting process, an 
initial photo was taken that is to scale on gray photographic paper 
and that will act as a reference card. The settings made for the refer-
ence card capture, which became the standard for all subsequent 
captures and aided in the normalization involved measuring the 
color checker's grayscale gradation reading to be the next gradation 

equal to twice the previous reading. In order to do this, through the 
histogram option of the photoshop image editor, the gray scale was 
measured for each square of the gray scale of the color checker scale, 
where each one was almost twice the size of the previous one, from 
the black to white, while the value in the area in the spectralon 
should not exceed 250 which is the value of white, thus it is avoided 
the shot to be overexposed. 

Many tests were done that related to changing the possibilities 
provided by the program and related to brightness, luminance, hue, 
saturation, chroma, lightness (Yu-Ichi, 1980), where through their 
changes an attempt was made to find out what exactly we should 
focus on in order to have the right result.  

Camera’s error evaluation 

The purpose of using the MUSES-9 HS imaging sensor was to 
offer the capability of altering the spatial resolution through pixel 
binning. The device is capable of supporting extensible spatial reso-
lutions between 8 and 2 megapixels. 

An experimental procedure is performed to find the camera’s er-
ror, but also to demonstrate the importance of standardization for 
the data measurements.  

A measurement was then carried out at the same points but this 
time on the corresponding normalized image as described above, in 
order to see the resulting difference and prove the power of the nor-
malization process.
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Supplementary Table S1: The numerical data of spectra for the samples with an underlying color of Egyptian blue. The last three refer to the 3 tests and correspond to the measured No. 15 with 
titanium nickel yellow as the background as No 47, 48, 49. 

 

 

  

LOWER COLOR UPPER COLOR CODE No 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000

earth EGYPTIAN BLUE 1-EGY-EAR 19 17 26 26 27 30 29 28 26 21 16 19 22 32 30 34 39 37 39 43 50 59 63 66 74 74 79 75 80 83

malachite EGYPTIAN BLUE 2-EGY-MAL 21 27 34 34 37 36 31 27 24 18 15 14 22 20 29 28 30 31 31 28 32 36 39 47 45 50 56 54 57 63

Cr green EGYPTIAN BLUE 3-EGY-CrGRE 29 23 27 27 28 30 26 20 16 14 13 16 22 27 36 48 57 58 59 64 73 84 101 112 122 123 122 119 118 121

Cu green EGYPTIAN BLUE 4-EGY-CuGR 25 24 26 27 30 33 26 24 18 15 15 16 22 33 44 52 53 66 73 78 85 96 109 125 137 136 136 129 129 135

cobalt green EGYPTIAN BLUE 5-EGY-CoBGR 29 35 37 36 38 34 29 27 18 18 16 15 21 29 29 37 47 54 55 61 69 81 99 117 128 127 129 122 123 110

viridian EGYPTIAN BLUE 6-EGY-VIR 32 35 38 33 36 29 21 20 16 12 14 15 18 28 27 32 47 58 61 64 73 90 112 125 140 139 139 139 141 137

pthalo EGYPTIAN BLUE 7-EGY-PTH 19 28 36 34 31 18 13 16 13 13 13 12 14 17 19 20 22 27 27 30 34 39 54 59 75 79 90 97 101 107

sap EGYPTIAN BLUE 8-EGY-SAP 15 13 26 23 24 21 28 20 18 16 15 15 24 34 45 52 55 54 55 60 65 78 96 109 124 124 130 130 131 142

gold ochre EGYPTIAN BLUE 9-EGY-GOLDOCH 27 34 35 34 31 28 26 26 24 15 16 16 28 34 50 59 63 58 57 63 69 85 97 111 118 121 125 121 123 126

ground EGYPTIAN BLUE 10-EGY-GRO 29 37 49 54 45 34 30 27 20 16 17 16 21 39 56 63 63 63 62 63 77 83 107 117 131 135 130 135 132 130

lead white EGYPTIAN BLUE 11-EGY-LWH 30 39 59 57 55 42 33 31 27 19 17 19 30 50 60 75 78 73 73 82 89 103 123 140 149 143 153 146 147 149

zinc white EGYPTIAN BLUE 12-EGY-ZWH 44 56 75 74 67 55 49 41 33 29 21 27 43 55 88 102 105 96 97 100 103 120 139 163 173 169 173 166 166 163

titan EGYPTIAN BLUE 13-EGY-TIT 66 71 94 96 78 70 55 45 37 29 26 31 39 53 87 101 99 97 96 98 107 123 145 169 181 186 182 182 177 176

lead tin EGYPTIAN BLUE 14-EGY-LTIN 22 32 52 57 60 56 49 41 34 28 23 27 34 60 76 85 89 81 81 85 93 105 124 150 169 164 169 167 172 170

nickel titan EGYPTIAN BLUE 15-EGY-NTIT 22 32 39 55 59 56 57 46 38 31 27 26 34 42 79 83 82 77 78 81 93 105 124 148 161 165 166 162 166 162

cad yellow EGYPTIAN BLUE 16-EGY-YC 28 28 19 19 23 56 53 57 49 35 32 31 44 66 93 107 109 107 108 103 117 139 152 161 182 185 188 184 186 184

naples EGYPTIAN BLUE 17-EGY-NAP 18 21 30 36 43 40 35 42 31 30 22 31 46 72 81 85 88 89 90 92 100 115 131 144 171 171 169 166 163 163

Cr yellow EGYPTIAN BLUE 18-EGY-CrYEL 28 26 17 23 34 37 35 37 30 24 24 26 34 52 75 86 85 80 85 87 99 113 131 152 166 168 172 166 164 160

orpiment EGYPTIAN BLUE 19-EGY-ORP 30 38 39 43 35 35 30 29 23 15 14 16 29 41 60 69 72 66 66 70 78 97 116 130 150 148 153 148 149 148

azurite EGYPTIAN BLUE 20-EGY-AZU 18 24 27 31 30 21 21 19 16 13 12 12 15 17 20 21 20 26 27 27 30 36 46 52 60 64 77 89 103 117

prussian EGYPTIAN BLUE 21-EGY-PRU 20 27 31 31 29 21 21 17 16 13 14 15 19 22 30 32 28 30 32 32 35 34 44 55 58 54 55 54 57 53

indigo EGYPTIAN BLUE 22-EGY-IND 19 20 15 16 17 21 16 15 15 12 14 13 15 20 26 32 50 59 64 69 75 90 116 125 141 142 155 153 153 158

smalt EGYPTIAN BLUE 23-EGY-SMA 18 20 28 31 25 18 17 17 14 13 13 14 18 26 37 47 45 49 50 55 62 80 97 106 123 122 126 125 126 124

cerulean blue EGYPTIAN BLUE 24-EGY-CBL 29 34 49 52 44 30 20 19 14 13 12 11 18 26 60 87 98 96 99 101 111 134 150 161 171 176 176 179 175 162

lapis EGYPTIAN BLUE 25-EGY-LAP 28 34 37 37 33 26 17 20 15 15 13 13 19 28 38 49 56 57 59 60 68 81 98 113 119 120 123 123 121 124

aigyptian EGYPTIAN BLUE 26-EGY-EGY 22 29 37 38 36 30 24 20 16 13 13 14 18 28 36 44 41 42 41 43 52 61 76 90 112 110 112 110 108 113

ultramarin EGYPTIAN BLUE 27-EGY-ULT 25 34 42 36 26 17 15 14 12 13 13 11 14 14 20 29 45 53 57 63 69 77 94 102 117 122 130 132 137 150

cobalt blue EGYPTIAN BLUE 28-EGY-CoBL 23 27 33 30 26 26 21 15 14 13 12 13 14 17 24 19 24 26 30 37 55 75 103 121 140 143 146 155 152 156

cad red EGYPTIAN BLUE 29-EGY-CaRED 27 26 20 23 21 18 20 16 17 19 19 24 38 47 64 74 77 78 78 77 93 116 114 128 137 135 139 137 137 128

cinnabar EGYPTIAN BLUE 30-EGY-CIN 21 24 26 27 23 18 19 16 18 16 18 20 28 40 54 68 73 70 73 73 86 119 122 139 156 154 155 154 149 148

minio EGYPTIAN BLUE 31-EGY-MIN 21 34 32 29 27 24 19 19 20 18 21 23 36 55 73 83 86 82 75 80 91 125 126 141 162 158 163 160 158 155

aimatite EGYPTIAN BLUE 32-EGY-HEM 16 21 26 26 20 21 18 17 16 15 16 21 24 32 38 42 47 46 46 48 52 61 64 75 87 86 91 85 92 97

yellow ochre EGYPTIAN BLUE 33-EGY-YOCH 25 23 28 29 29 28 29 31 29 21 19 22 32 45 57 67 73 73 73 79 81 91 101 106 114 108 111 105 112 113

red ochre EGYPTIAN BLUE 34-EGY-ROCH 20 21 23 24 21 18 20 17 17 16 16 21 27 35 49 61 65 68 68 67 74 84 100 112 119 128 130 135 136 148

realgar EGYPTIAN BLUE 35-EGY-RLG 22 23 28 28 27 27 24 28 28 22 18 22 42 56 68 76 75 79 77 81 94 108 128 153 161 162 163 158 155 163

lake EGYPTIAN BLUE 36-EGY-LAK 19 17 21 20 19 15 17 17 15 15 15 19 30 41 59 72 79 82 89 97 99 106 126 144 158 158 166 166 167 163

carmine EGYPTIAN BLUE 37-EGY-CAR 17 28 20 20 23 24 19 16 16 16 16 15 22 35 51 63 68 68 68 70 81 101 116 131 141 149 153 153 149 152

furnace EGYPTIAN BLUE 38-EGY-FUR 23 22 28 28 24 21 16 16 16 15 14 13 14 18 24 20 26 26 24 27 27 33 42 47 50 53 45 49 44 37

ivory EGYPTIAN BLUE 39-EGY-IVO 30 28 30 29 27 17 16 16 15 13 14 12 15 17 20 20 22 24 26 27 27 30 38 43 47 47 43 44 39 39

asphalt EGYPTIAN BLUE 40-EGY-ASP 13 12 12 12 13 13 12 12 13 12 13 14 13 15 15 18 14 17 18 18 22 22 27 29 29 40 37 39 35 37

Fe EGYPTIAN BLUE 41-EGY-FE 24 21 23 22 23 18 18 18 17 15 17 15 17 21 30 35 31 34 31 31 35 37 43 54 53 58 57 52 44 53

sepia EGYPTIAN BLUE 42-EGY-SEP 15 12 13 15 15 15 16 15 15 13 13 13 14 16 20 22 24 22 22 29 26 23 27 35 37 42 37 47 39 49

ombre burnt EGYPTIAN BLUE 43-EGY-OMBB 38 18 28 28 24 26 26 18 17 14 14 12 20 21 29 31 28 34 34 40 43 44 55 61 69 68 76 82 70 80

ombre raw EGYPTIAN BLUE 44-EGY-OMBR 23 27 27 23 27 26 21 21 18 18 18 18 26 26 30 32 33 32 32 31 34 37 53 52 55 56 58 58 59 59

siena burnt EGYPTIAN BLUE 45-EGY-SIEB 26 26 30 35 31 29 26 21 18 16 17 15 22 31 41 50 52 50 52 52 56 63 69 81 89 99 98 98 97 103

siena raw EGYPTIAN BLUE 46-EGY-SIER 32 36 36 29 28 26 27 23 19 16 17 15 24 33 50 53 55 53 52 53 58 67 73 87 101 100 94 97 92 97

15test-1 23 31 40 56 61 54 59 45 39 30 26 25 33 43 78 85 84 79 76 82 90 108 127 150 157 168 169 159 162 167

15test-2 21 33 38 54 58 58 55 47 38 29 28 27 35 41 81 84 80 75 79 79 96 102 121 144 163 160 171 158 163 158

15test-3 22 34 41 53 62 55 56 48 37 32 29 28 32 43 77 81 81 76 80 83 92 104 123 152 166 170 161 167 171 160
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Supplementary Table S2: the numerical data of spectra for the samples with underlying color cadmium red. The last three refer to the 3 tests and correspond to the measured No. 44 with the under-
lying raw ombre shadow. 

 
 
 

  

LOWER COLOR UPPER COLOR CODE No 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000

earth cad red 1-CR-EAR 15 13 14 14 13 14 18 17 23 51 130 168 176 192 185 191 192 190 200 204 203 205 208 202 209 212 209 207 203 200

malachite cad red 2-CR-MAL 11 12 11 12 12 12 13 13 17 44 78 84 91 88 86 94 87 91 82 88 78 84 78 82 77 78 73 77 67 66

Cr green cad red 3-CR-CrG 12 12 11 11 11 12 12 12 17 39 114 137 168 173 191 191 189 190 192 197 201 201 196 204 200 204 199 199 203 199

Cu green cad red 4-CR-CuG 15 13 14 14 13 14 18 17 23 51 130 168 176 192 185 191 192 190 200 204 203 205 208 202 209 212 209 207 203 200

cobalt green cad red 5-CR-CoG 11 12 12 13 12 13 13 14 16 32 129 168 178 190 202 202 202 204 202 209 206 201 210 209 213 213 207 207 208 202

viridian cad red 6-CR-VIR 11 12 12 13 12 12 12 13 16 39 121 129 177 183 175 186 198 192 202 202 202 203 213 207 213 213 208 212 216 203

pthalo cad red 7-CR-PTH 15 12 12 14 12 12 13 14 17 45 122 160 163 176 173 183 186 191 194 191 184 186 191 194 201 202 198 202 204 195

sap cad red 8-CR-SAP 14 12 12 13 12 12 15 14 17 42 123 152 162 164 177 177 178 188 193 192 195 199 203 194 209 215 210 206 210 208

gold ochre cad red 9-CR-GOCH 11 13 12 12 12 12 12 13 16 39 120 156 167 172 174 177 180 183 181 191 186 186 191 188 190 187 187 190 189 183

ground cad red 10-CR-GRO 13 13 13 13 12 13 14 14 18 42 127 173 181 192 208 204 209 210 209 211 212 216 217 217 223 219 217 218 221 217

lead white cad red 11-CR-LW 20 12 14 15 13 14 14 16 20 44 122 171 191 179 189 208 200 210 206 212 205 207 205 213 203 202 207 212 206 214

zinc white cad red 12-CR-ZW 19 16 16 15 13 18 17 19 20 45 125 174 181 170 186 201 206 209 205 203 206 205 204 216 207 204 204 205 212 205

titan cad red 13-CR-TIT 16 13 13 14 13 15 15 17 19 41 116 155 181 177 194 195 200 203 204 203 199 204 206 204 204 201 198 205 200 210

lead tin cad red 14-CR-LTIN 13 15 15 16 16 17 19 19 21 49 131 174 195 198 215 212 213 216 219 219 219 219 231 225 228 225 229 232 235 222

nickel titan cad red 15-CR-NiTIT 15 13 15 15 15 14 15 16 20 46 129 168 177 181 192 199 192 199 198 202 200 199 204 205 207 217 210 213 217 205

cad yellow cad red 16-CR-CRYE 12 12 13 13 13 14 12 15 17 45 118 164 176 191 192 201 200 202 208 210 209 209 220 214 216 221 215 215 221 218

naples cad red 17-CR-NAP 15 13 14 13 13 15 16 19 20 49 128 174 189 195 203 205 208 208 210 211 205 210 217 215 212 213 215 214 209 211

Cr yellow cad red 18-CR-CrYE 13 12 13 12 12 12 14 14 16 41 128 167 176 188 200 202 200 204 207 207 211 213 212 214 216 219 221 215 217 212

orpiment cad red 19-CR-ORP 11 12 12 12 12 12 13 14 16 41 116 167 171 185 192 195 188 189 191 197 196 193 203 197 202 202 202 200 201 200

azurite cad red 20-CR-AZU 13 12 12 12 14 13 14 17 21 40 67 77 81 82 80 82 79 79 75 76 77 74 73 68 69 68 65 67 63 60

prussian cad red 21-CR-PRU 12 13 12 12 12 12 13 15 19 48 127 160 168 180 180 183 177 169 172 172 170 166 170 167 168 168 168 170 168 160

indigo cad red 22-CR-IND 12 11 12 12 12 11 14 14 16 41 115 149 149 159 155 160 160 166 177 178 180 185 194 195 204 206 207 211 214 214

smalt cad red 23-CR-SMA 12 13 13 16 14 15 15 18 21 43 120 156 167 173 165 167 172 174 172 177 178 175 183 173 176 179 177 179 177 175

cerulean blue cad red 24-CR-CBL 13 13 13 13 13 12 13 15 19 47 125 163 169 184 190 188 195 201 206 207 212 206 214 215 210 217 207 211 213 202

lapis cad red 25-CR-LAP 12 13 12 12 12 12 12 15 17 45 122 162 172 183 184 180 177 185 185 193 189 184 191 187 196 191 192 186 196 191

aigyptian cad red 26-CR-EGY 12 15 14 13 14 14 16 17 23 48 115 140 150 162 158 161 156 162 160 158 157 153 158 153 152 155 151 156 147 151

ultramarin cad red 27-CR-ULT 13 12 13 12 14 12 16 16 19 52 133 168 172 184 189 190 188 189 195 197 196 197 200 197 202 202 201 199 212 199

cobalt blue cad red 28-CR-CoBL 11 12 14 14 12 12 14 14 17 51 121 159 170 185 179 185 184 184 184 190 194 194 199 195 205 205 206 206 212 203

cad red cad red 29-CR-CaRED 13 13 14 13 12 13 15 16 20 52 127 177 192 191 201 208 207 211 214 217 217 219 222 230 220 225 223 222 225 226

cinnabar cad red 30-CR-CIN 12 13 12 12 12 12 13 13 17 47 130 172 185 198 211 210 205 211 213 208 216 209 215 221 218 221 221 218 217 210

minio cad red 31-CR-MIN 11 12 12 12 12 12 13 13 18 45 119 164 178 187 196 194 191 202 206 207 212 207 216 211 213 217 215 217 222 216

aimatite cad red 32-CR-HEM 15 13 14 14 13 15 16 17 23 50 125 156 168 168 174 177 168 172 170 167 167 167 168 165 160 171 166 163 167 167

yellow ochre cad red 33-CR-YOCH 14 13 13 13 13 14 17 16 18 47 127 171 183 185 184 195 189 195 194 196 197 196 195 194 196 200 196 189 197 191

red ochre cad red 34-CR-ROCH 13 13 12 13 12 12 13 14 18 40 117 166 174 185 192 190 185 184 190 192 191 197 200 195 195 201 195 195 201 200

realgar cad red 35-CD-RLG 11 12 12 13 13 14 14 15 19 46 129 172 193 195 205 206 208 213 212 215 215 218 217 220 220 221 218 218 212 216

lake cad red 36CR-LAK 12 11 12 12 12 12 12 14 17 43 125 158 173 173 192 188 190 201 205 208 211 212 215 219 217 219 219 218 219 216

carmine cad red 37-CR-CAR 11 13 12 12 13 12 13 15 17 44 122 156 170 180 197 194 192 200 203 209 210 208 213 214 211 218 214 215 218 218

furnace cad red 38-CR-FUR 13 13 14 13 13 14 13 16 20 52 123 164 168 173 181 181 178 173 175 181 171 171 175 164 169 170 166 165 165 158

ivory cad red 39-CR-IVO 12 12 12 12 12 13 13 14 18 44 123 151 167 166 173 168 166 167 167 172 170 167 163 167 167 167 169 166 163 154

asphalt cad red 40-CR-ASPH 12 13 11 13 12 13 13 15 18 42 112 139 147 155 153 157 156 152 154 156 159 152 160 156 156 159 159 156 159 153

Fe cad red 41-CR-FE 12 15 15 12 13 15 15 17 19 50 122 162 172 174 179 178 175 172 166 171 170 169 177 168 171 157 165 166 166 159

sepia cad red 42-CR-SEP 15 12 12 14 12 14 15 16 16 46 118 156 169 172 177 172 177 171 176 181 182 180 180 182 179 180 170 175 178 162

ombre burnt cad red 43-CR-OMBB 11 11 11 12 12 11 14 13 16 39 108 143 143 146 150 149 139 152 146 145 153 151 147 152 152 157 147 153 152 139

ombre raw cad red 44-CR-OMBR 13 12 12 12 13 13 13 16 18 44 123 157 165 161 175 164 169 169 168 168 165 164 168 159 160 168 163 159 159 146

siena burnt cad red 45-CR-SIB 14 12 12 13 13 13 13 15 20 44 119 142 151 153 162 156 155 157 157 159 154 155 157 157 155 165 161 159 155 157

siena raw cad red 46-CR-SIR 12 12 12 13 13 13 13 15 17 40 121 150 162 166 176 170 167 175 173 173 172 166 168 163 161 157 166 161 166 162

test1-44 12 12 13 12 12 13 13 16 19 45 126 160 167 164 179 169 169 173 163 172 166 159 165 161 159 172 160 162 159 150

test2-44 13 11 12 13 13 14 12 17 18 43 122 153 162 158 177 162 174 170 169 165 161 162 163 157 159 170 168 160 158 143

test3-44 14 13 11 12 14 12 14 15 17 44 120 158 161 166 172 168 168 172 173 167 170 168 172 164 164 165 166 157 164 151
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Supplementary Table S3: the numerical data of spectra for the samples with underlying color cadmium yellow. The last three refer to the 3 tests and correspond to the measured No. 27 with the 
underlying red carmine. 

 

 

LOWER COLOR UPPER COLOR CODE NO 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000

lead white cad yellow 1-YC-LWH 13 15 13 15 25 129 184 193 199 207 221 210 213 212 217 222 221 219 224 227 221 222 232 228 223 226 222 228 223 221

zinc white cad yellow 2-YC-ZWH 17 12 13 15 26 127 192 187 199 213 227 209 206 213 220 218 213 214 221 223 221 222 222 222 228 234 233 222 230 218

titan cad yellow 3-YC-TIT 12 12 13 13 22 116 162 188 196 195 217 210 212 217 209 217 204 206 217 210 216 210 218 214 216 222 220 214 219 217

lead tin cad yellow 4-YC-LTIN 15 15 13 14 23 125 174 197 197 205 214 210 212 209 219 221 210 214 216 218 215 216 220 220 222 218 217 222 218 219

nickel titan cad yellow 5-YC-NTIT 14 14 13 12 22 121 176 184 195 201 214 198 197 195 193 199 191 192 193 191 194 192 200 201 203 210 204 206 212 198

cad yellow cad yellow 6-YC-YC 14 12 12 12 22 117 167 177 190 192 203 199 195 205 212 206 200 204 205 209 207 208 217 209 210 215 205 210 216 205

naples cad yellow 7-YC-NAP 14 14 13 15 26 123 161 174 174 189 197 196 198 206 212 208 209 211 208 214 205 203 216 216 213 209 213 208 215 205

Cr yellow cad yellow 8-YC-CrYEL 14 14 13 15 25 119 173 183 187 202 213 200 200 204 209 210 209 207 208 213 212 216 217 216 216 220 215 216 218 207

orpiment cad yellow 9-YC-ORP 12 12 12 13 22 116 163 171 181 181 192 189 194 197 203 199 192 192 194 200 194 192 200 195 198 195 197 198 206 194

azurite cad yellow 10-YC-AZU 17 13 14 12 23 107 132 139 142 147 150 153 143 135 148 140 137 134 134 133 127 120 128 123 119 117 114 121 114 113

prussian cad yellow 11-YC-PRU 12 13 12 12 20 110 152 155 159 167 173 166 162 175 167 164 155 162 159 163 161 160 161 164 155 157 155 153 157 153

indigo cad yellow 12-YC-IND 11 12 12 12 21 106 138 151 154 160 167 168 162 167 172 170 167 177 179 190 186 184 193 191 205 201 204 200 208 209

smalt cad yellow 13-YC-YSM 14 15 14 13 24 117 161 170 166 176 178 179 176 184 180 177 175 182 182 183 184 183 192 190 192 188 195 191 191 183

cerulean blue cad yellow 14-YC-CBLU 15 13 12 12 23 119 169 175 179 182 199 182 183 195 190 200 202 211 213 218 214 214 217 225 221 227 227 217 220 205

lapis cad yellow 15-YC-LAP 13 13 12 12 23 115 154 161 165 162 179 166 163 169 172 175 173 170 170 173 173 174 181 167 172 173 170 168 171 178

aigyptian cad yellow 16-YC-EGY 12 13 12 13 24 123 163 173 176 181 194 193 187 195 195 192 195 192 193 191 196 190 198 201 200 202 200 201 196 200

ultramarin cad yellow 17-YC-ULT 12 13 12 12 23 119 164 168 174 181 190 176 174 180 181 177 175 176 177 175 180 178 182 182 174 187 181 181 183 181

cobalt blue cad yellow 18-YC-CoBL 11 11 11 11 19 112 155 162 162 169 174 164 166 172 174 167 160 160 167 167 168 172 183 184 187 190 192 191 189 187

cad red cad yellow 19-YC-CRED 14 12 14 14 21 120 158 164 161 173 190 202 200 205 213 213 204 215 212 216 215 216 220 227 217 221 218 215 222 217

cinnabar cad yellow 20-YC-CIN 13 12 13 14 23 124 172 175 176 184 209 205 208 208 220 212 206 208 209 215 210 211 213 213 212 218 214 212 215 212

minio cad yellow 21-YC-MIN 11 12 13 12 20 104 151 160 166 176 195 191 188 199 200 192 193 194 199 203 203 205 216 204 211 209 211 209 214 209

aimatite cad yellow 22-YC-HEM 17 12 14 13 21 117 163 167 165 176 189 191 185 194 193 196 192 190 191 189 185 190 188 187 182 183 182 183 179 181

yellow ochre cad yellow 23-YC-YOCH 12 12 12 13 21 114 168 161 176 181 198 172 179 190 197 194 188 195 192 195 193 188 189 189 183 188 185 189 184 177

red ochre cad yellow 24-YC-ROCH 12 11 12 12 19 110 155 164 168 185 187 181 179 193 190 182 180 182 185 183 178 176 183 188 177 181 185 180 186 185

realgar cad yellow 25-YC-RLG 12 14 14 13 23 117 143 158 171 195 204 206 201 204 203 213 216 214 213 214 212 216 215 214 218 213 209 220 212 214

lake cad yellow 26-YC-LAK 12 12 12 12 23 106 145 151 158 173 184 177 172 192 181 191 197 205 209 205 214 213 213 222 208 209 204 212 214 191

carmine cad yellow 27-YR-CAR 12 13 12 12 19 116 153 169 172 177 186 183 183 190 186 190 188 189 184 199 192 192 206 205 202 196 196 201 203 201

furnace cad yellow 28-YC-FUR 13 12 14 15 26 120 153 156 161 156 161 149 137 144 155 143 154 149 148 149 146 144 145 140 143 139 143 142 137 136

ivory cad yellow 29-YC-IVO 13 13 13 12 22 116 143 159 160 165 176 166 158 162 160 156 154 152 149 147 146 147 142 145 138 149 140 136 140 127

asphalt cad yellow 30-YC-ASP 13 12 11 13 19 90 112 113 114 125 130 122 123 126 137 137 148 146 152 154 148 155 159 154 160 162 155 158 158 150

Fe cad yellow 31-YC-FE 15 14 13 13 21 120 158 157 163 166 171 166 158 165 155 167 164 165 164 164 159 157 161 160 157 155 150 155 148 141

sepia cad yellow 32-YC-SEP 20 13 14 15 24 123 164 173 181 190 198 181 179 186 184 174 182 181 180 175 176 171 172 175 176 179 172 171 171 162

ombre burnt cad yellow 33-YC-OMBB 11 11 12 11 21 118 150 156 157 158 162 154 157 156 157 155 153 146 146 148 139 151 155 145 134 143 143 143 135 142

ombre raw cad yellow 34-YC-OMBR 12 14 13 14 24 116 146 141 148 147 153 143 140 144 157 147 151 151 154 149 147 152 149 145 138 145 141 146 141 146

siena burnt cad yellow 35-YC-SIEB 11 13 13 14 22 113 165 163 168 169 185 177 172 176 179 172 167 172 173 168 172 163 171 169 175 171 171 169 169 167

siena raw cad yellow 36-YC-SIER 13 11 12 12 19 112 158 150 162 153 183 182 179 174 183 175 160 171 168 162 169 156 158 165 176 171 171 174 170 169

earth cad yellow 37-YC-EAR 15 12 12 14 20 118 157 168 170 180 180 182 173 170 175 173 170 170 170 172 168 169 172 170 165 166 162 162 159 160

malachite cad yellow 38-YC-MAL 12 12 12 13 21 83 100 102 105 106 109 102 100 99 101 100 96 94 87 80 84 70 70 70 72 73 64 66 64 62

Cr green cad yellow 39-YC-CrGRE 14 12 12 13 21 121 161 172 177 179 191 187 182 182 180 187 187 189 193 201 195 191 197 192 193 196 197 191 190 185

Cu green cad yellow 40-YC-CuGR 14 13 12 14 23 117 163 178 177 188 183 184 181 187 196 185 186 196 196 196 198 197 197 200 200 197 201 195 199 197

cobalt green cad yellow 41-YC-CoGRE 13 12 12 13 20 116 165 165 167 168 181 177 166 166 173 169 166 171 177 181 185 181 189 189 193 195 191 184 184 168

viridian cad yellow 42-YC-VIR 12 11 12 13 22 114 151 170 171 191 197 196 189 187 196 188 189 192 200 207 208 206 215 212 216 217 217 208 215 216

pthalo cad yellow 43-YC-PTH 12 14 13 13 20 106 137 141 143 153 147 146 142 142 141 146 145 142 144 147 140 139 142 147 150 150 151 158 161 162

sap cad yellow 44-YC-SAP 12 13 12 12 21 99 132 140 146 160 170 162 167 174 178 190 181 190 191 194 191 190 201 201 203 210 207 207 209 204

gold ochre cad yellow 45-YC-GOLDOCH 12 12 12 11 19 113 158 178 178 184 193 185 180 180 186 186 184 189 189 190 188 184 186 182 185 190 183 184 192 186

ground cad yellow 46-YC-GRO 11 15 13 12 22 114 171 189 199 201 210 203 206 218 221 209 217 213 210 211 218 214 223 219 222 218 220 214 222 217

test1-27 12 12 13 13 20 118 150 174 167 172 190 180 178 185 182 196 191 188 180 200 198 195 204 200 198 197 192 205 198 207

test2-27 11 14 12 11 18 113 156 170 170 179 182 188 180 192 191 190 189 184 190 193 190 197 200 209 206 200 201 200 205 199

test3-27 13 12 11 12 19 119 154 165 177 182 191 178 186 195 185 188 183 187 189 192 191 187 211 199 200 192 195 197 208 200
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Figure S2. The ten points that spectrum was measured before (left) and after (right) the standardization.  

It was observed that at different points in the same square area 
there is a slight difference in the resulting spectrum values, so this 
resulting error should be measured. Ten different spots were taken 
in an area of color that does not naturally contain the preparatory 
layer, the measurements were taken, and a print screen was made 
of them to record the difference (Fig.S2). 

Ιn the preparatory drafts in every square 5 such preparatory 
drafts were made. The first with charcoal, the second with graphite, 
the third with oven black in egg tempera (because in the preliminary 
drawing -anthivolo- they used fumo which is oven black), the fourth 
engraved and the fifth raw sienna in egg tempera (Fairchild, 2005).  

Then the pigments of different colors were applied. First the first 
layer parallel to the lines of the drafts, so that they do not drift and 
especially the charcoal and vertically the overpainting was drawn. 
The 5 panels were left alone, without overlays, as they were the ref-
erence samples. It should be noted here that the IR readings were 

taken initially on the whole square that included all drafts, eventu-
ally this was revealed during the panel preparation and the way 
near IR readings were taken and the spectra analyzed were ex-
tracted from a sub-area of square where no draft was there to avoid 
confusion in the interaction of IR with the drafts. Moreover, this 
preparation is preliminary and no control of the uniform brushing 
is secured. The impact of different drafted preparatory material on 
spectra as well as the camera conditions and settings in taking the 
readings is planned for a near future investigation. 

The binding material used with pigments was egg, vinegar, and 
water. The pigments were mixed with the egg mixture in a mortar 
in order to achieve as much uniformity as possible in relation to the 
grains of each, but also for complete homogenization. Fig.S3 give 
representative spectra for the three Sets. 

 

Figure S3. NIR spectra for a) cadmium yellow with orpiment underlie, b) same with a for interpolated values, c) red cadmium with ultra-
marine and d) Egyptian blue with earth (for data see Tables S1-S3). 

THE COMPLEXITY MEASURES 

A. Fractals 

1. Allometric scaling dimension 

Several downscaled and aggregated sub-signals of the input sig-
nal were calculated. For all sub-signals, the corresponding mean 
values and standard deviations were plotted on a double logarith-
mic graph. The slope of the linear regression provided an estimate 
of the fractal dimension (West et al., 1999). This is the first time im-
plemented as software in solving a problem. 

2. Higuchi Dimension 

Lengths of sub-signals (constructed by taking points at different 
distances) were computed and plotted on a double logarithmic plot 
as a function of the distance variable. The slope of the linear regres-
sion revealed the Higuchi dimension (Higuchi, 1988). 

3. Tug of war Dimension 

Hash functions with data points inside a radius were constructed 
by summing up prime number polynomials. Even hash functions 
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were counted and the slope of a double logarithmic plot were taken 
as an estimate of the fractal dimension (Wong et al., 2005). 

4. Katz Dimension 

An estimate of the fractal dimension was computed with the av-
erage Euclidean distance between successive data points and the 
maximal Euclidean distance to the first data point (Katz, 1988). 

5. Petrosian Dimension 

Data point values were binarized by thresholding with the signal’s 
mean. Then, the number of changes in the binary sequence were com-
puted in order to get an estimate of the fractal dimension (Petrosian, 
1995). 

6. Sevcik Dimension 

The signals were linearly transformed to normalized spaces. The 
lengths of the transformed signals and the spacing variable gave di-
rectly an estimate of the fractal dimension (Sevcik, 2010).  

Four Entropy measures 

1. Shannon Entropy 

The probability distributions of all data point values gave a di-
rect entropy value (Shannon, 1948; Zenil, 2020).  

2. Approximate entropy 

Sub-patterns of the signal were extracted and corresponding simi-
larities, defined by the sub-patterns differences smaller than a give 
value, gave this entropy measure (Richman and Moorman, 2000).  

3. Sample Entropy 

A normalized version of the Approximate entropy eliminating 
self matches (Richman and Moorman, 2000). 

4. Permutation entropy 

Sub-samples of the signal were extracted and several permu-
tated versions generated. All these permutated sub-samples were 
compared to the ranked version of the sub-sample and a probability 
distribution yielded an entropy value (Bandt and Pompe, 2002).  

B. Four Other complexity measures 

1. Kolmogorov complexity 

The Kolmogorov complexity or algorithmic complexity cannot 
be computed directly as it is a theoretical concept of finding the 
Bytes used for the shortest computer program to generate an object 
or a result. But it can be estimated by applying compression algo-
rithms. The Bytes of the compressed data values were taken as this 
estimate of KC. The common compression algorithms ZLIB and 
GZIB were used (Zenil, 2020). 

2. Hurst coefficient 

The power spectrums of the signals were computed and depend-
ing on the slope a decision was made if signals were fractional 
Gaussian noise fGn or fractional Brownian motion fBM. Then the 
Hurst coefficient was computed with a dispersional analysis for fGn 
or are scaled windowed variance analysis for fBm (Eke et al., 2000).  

3. Detrended fluctuation analysis DFA 

Fluctuation functions for several window widths were computed 
and the residuals determined. The average variance of the detrended 
signals for a given window width was double logarithmically plotted 
an the slope gave the scaling exponent (Peng et al., 1994). 

4. Lyapunov exponent 

Attractors with varying embedding dimensions and delays (in 
our case wavelengths) were constructed. The nearest neighbour of 
each point of the series was taken to define minimal distances. The 
slope of a linear interpolation in a double logarithmic plot of these 

minimal distances as function of wavelengths gave the value for the 
largest Lyapunov exponent (Rosenstein et al., 1993).  

CHOICE OF STATISTICAL METHODS 

 The choose of linkage clustering methods to perform the hierar-
chical clustering we need a Method of minimal sum-of-squares, the 
Proximity between two clusters to be the summed square in their 
joint cluster, and a Method of minimal increase of variance and of 
minimal variance. 

The average and complete linkage perform well on cleanly sep-
arated globular clusters, but have mixed results otherwise; and 
Ward is the most effective method for noisy data. 

Investigating with different methods is done to evaluate the re-
sults with methods that can process the type of data present. The 
hierarchical clustering used here is generally recommended for 
small object sample sizes (not thousands) as in the present case. In 
any case, a more exclusive procedure of proving similarity with 
some measure of similarity between hierarchical classifications, we 
refer to "comparison of dendrograms" and "comparison of hierar-
chical classifications" which we approached with tests (PCA, K 
means, Box plots, Silhouette, Wilks texts). 

It is generally known that it is not recommended to visually com-
pare dendrograms (to choose the method that gives the strongest 
partition), obtained by different cumulative methods. Since no an-
swer will be given about the "best" method. Each method has its 
own "default" dendrogram appearance: Dendrograms will consist-
ently differ even when the data has no group structure or random 
group structure. In this case we can, however, compare dendro-
grams produced by the same method but on different data. 

But in the Ward method it is not correct to decide directly on the 
number of clusters (ie where to cut the dendrogram to show 
groups). In Ward, the tree plot shows the increase in the cumulative, 
not the mean, coefficient of collectivity. and the consequence is that 
since the later clusters are larger than the number of points, the later 
groups appear deceptively "better" in the dendrogram. The diffi-
culty of normalizing the Ward dendrogram led us to examine the 
groups with other statistical tests such as box plot techniques, sil-
houette values for each group, the K-means method, which classi-
fies the objects into a predetermined number of groups, the Wilks 
test, and the graphs in PCA with emphasis on the 1st and 2nd com-
ponents recommended. 

An update to the dendrogram problem of Wards method 
showed that different clustering software might produce different 
transformed clustering coefficients for Ward's method. Therefore, 
their dendrograms will look somewhat different, despite the fact 
that the clustering history and results are the same. For example, 
SPSS does not take the root of hypermetric coefficients, but accumu-
lates them in the output. 

Average-linkage is where the distance between each pair of sam-
ples (observations) in each cluster are added up and divided by the 
number of pairs to get an average inter-cluster distance; Complete-
linkage (farthest neighbor) is where distance is measured between 
the farthest pair of samples in two clusters. This method usually 
produces tighter clusters than single-linkage, but these tight clusters 
can end up very close together; and Ward's clustering which is based 
on analysis of variance in the group of samples to estimate distances 
and minimize variability (Gauch and Whittaker, 1981). In the Ward 
method, the grouping is not done by distance, at least in a direct 
way. Specifically, it is based on the total sum of squares and which 
compound will cause less such quantity (Papageorgiou, 2020). Av-
erage-linkage and complete-linkage are the two most popular dis-
tance metrics in hierarchical clustering. 

Distance is taken into account implicitly because the sum of 
squares is calculated each time using the distance of the samples 
from the center of the group that will be formed in each hypothe-
sized union. Hence the interpretation of the dendrogram in this case 
must be done accordingly. Indeed, another tradition (found in some 
R packages, for example) is to take the root (so called "Ward-2" im-
plementations) and not to cumulate. Such differences affect only the 
general shape/looks of the dendrogram, not the clustering results. 
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But the image of the dendrogram might influence the decision about 
the number of clusters. The moral is that it would be safe not to rely 
on one dendrogram in any method at all, unless we know exactly 
what these coefficients are out of our program and how to interpret 
them correctly. One more reason we included the other three meth-
ods in our hierarchical homogenization with the ongoing discussion 
that follows. 

PCA was applied for data reduction, commonly used in archae-
ometry studies to highlight the presence of compositional groups 
between the artefacts. The initial dimensionality of the data sets, 
equal to the number of spectral cubes per 20 nm (N), is reduced to 
n, representing the number of Principal Components (PCs) used. 
PCs are then calculated as eigenvectors of the covariance matrix of 
the transformed data, whose eigenvalues represent the variance of 
the data along with the eigenvector directions. 

Box plots were used to show distributions of numeric data val-
ues, in order to compare them between multiple groups obtained by 
linkage and ward methods. The boxplot presents the five sample 
statistics - the minimum, the lower quartile, the median, the upper 
quartile and the maximum score. 

 

 

 

STATISTICAL ANALYSIS OF SET 1 

Complete Linkage-Set 1 (Fig S4) 

The Egyptian blues with underpainted No 12: zinc white and No 
13: titanium white belong to a differentiated group from that with 
the rest containing all three tests. And the other two groups that are 
formed are also different here and are as follows: the first which is 
the largest includes the earth greens, chromium, copper, copper, co-
balt, viridian, phthalo, sap, the golden ochre, blue azurite, Prussian, 
indigo, enamel, lapis, Egyptian, ultramarine and cobalt, red hema-
tite and the whole table of blacks and earths. The latter group in-
cludes lead white, yellow orpiment, cerulean blue, and all reds ex-
cept hematite which are in the former group. 

Silhouette scores for Set 1 

The silhouette scores for average and complete linkage are 
shown in Fig. S5 and the Ward with three and four groups in Fig. S6. 
This metric examines how similar the objects within a group are (co-
hesion) and how dissimilar the objects of different groups are (sep-
aration). Its value ranges from -1 to +1, where a high value indicates 
that the object matches the objects in its group fairly well and does 
not match the objects in the other groups at all. Negative value for a 
sample would indicate that it does not fit with the rest of the group 
that belongs to. For the group of interest, we see that the silhouette 
value ranges from 0.31 with Ward’s method to 0.50 with Average 
method. However, all values are comparable. 

PCA of Set 1 

Figure S7 the graphs of the groups we find in the first 2 principal 
components.  

  
CL-A CL-B CL-C CL-D 

Figure S4: Grouping by complete linkage groups (CL-A to CL-D) again with the two samples, the underpainted No 12: 
zinc white and No 13: titanium white to form a very distinct group. 

4
0
-E

G
Y

-A
S

P
4
2
-E

G
Y

-S
E

P
7
-E

G
Y

-P
T

H
2
0
-E

G
Y

-A
Z

U
2
-E

G
Y

-M
A

L
4
4
-E

G
Y

-O
M

B
R

2
1
-E

G
Y

-P
R

U
4
1
-E

G
Y

-F
E

4
3
-E

G
Y

-O
M

B
B

3
8
-E

G
Y

-F
U

R
3
9
-E

G
Y

-I
V

O
1
-E

G
Y

-E
A

R
3
2
-E

G
Y

-H
E

M
2
6
-E

G
Y

-E
G

Y
4
5
-E

G
Y

-S
IE

B
4
6
-E

G
Y

-S
IE

R
5
-E

G
Y

-C
o
B

G
R

6
-E

G
Y

-V
IR

2
5
-E

G
Y

-L
A

P
9
-E

G
Y

-G
O

L
D

O
C

H
3
-E

G
Y

-C
rG

R
E

4
-E

G
Y

-C
u
G

R
2
7
-E

G
Y

-U
L
T

2
8
-E

G
Y

-C
o
B

L
2
2
-E

G
Y

-I
N

D
8
-E

G
Y

-S
A

P
2
3
-E

G
Y

-S
M

A
1
2
-E

G
Y

-Z
W

H
1
3
-E

G
Y

-T
IT

1
6
-E

G
Y

-Y
C

1
4
-E

G
Y

-L
T

IN
1
5
-E

G
Y

-N
T

IT
1
5
te

s
t-

1
1
5
te

s
t-

2
1
5
te

s
t-

3
1
7
-E

G
Y

-N
A

P
1
8
-E

G
Y

-C
rY

E
L

2
4
-E

G
Y

-C
B

L
2
9
-E

G
Y

-C
a
R

E
D

3
1
-E

G
Y

-M
IN

3
5
-E

G
Y

-R
L
G

3
6
-E

G
Y

-L
A

K
3
4
-E

G
Y

-R
O

C
H

3
0
-E

G
Y

-C
IN

3
7
-E

G
Y

-C
A

R
3
3
-E

G
Y

-Y
O

C
H

1
1
-E

G
Y

-L
W

H
1
0
-E

G
Y

-G
R

O
1
9
-E

G
Y

-O
R

P0

5

10

15

20

H
e
ig

h
t

Complete



36 I. ANDRONACHE et al. 

 

SCIENTIFIC CULTURE, Vol. 10, No 1, (2024), pp. 1-58 

 

Figure S5: Silhouettes of average and complete linkage 

 

Figure S6: Plots of Silhouettes scores for the Ward & Ward-2 with 3 groups (average ~0.40) and 4 groups (average 0.30) respectively. Sil-
houette identifies two particular samples forming a seemingly “outlier” little cluster 
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Figure S7: Score plots of PCA for each method (average and complete linkage, k-means and ward (left) and ward-2 (right) 

  
Figure S8: Left: PCA score plots of the samples on the first two principal components. The color in sample points is according to group-
ing suggested from the Average Linkage. Right: The same plot when using as label for the sample points the lower underpainted color.  
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Overall, all five groupings presented in Fig. S4 exhibit a clear 
separation among groups confirming that the suggested grouping 
is meaningful. It appears that the first component is adequate to ex-
plain the variability of the data points. The group we are interested 
in scores high in the first PCA component as mentioned before and 
is indeed located on the right in every plot of Fig.S7. Namely, is the 
group with green color for the first plot, blue color for the 2nd, 3rd 
and 4th and red color (Fig.S5, S6) and for the k-means plot (Fig.S8, 
S10).  

In the PCA graph that follows with the labels of the data, Fig.S8, 
S9 it is clearly seen how extremely close (enclosed in the blue box) 
to sample 15 are the 3 tests, which are almost indistinguishable since 
they are the on top of the other. In Fig.S8 the 2 subplots are the same 

plot, but using as a label the upper color (left graph) and the lower 
color (right graph). The sample points for both graphs are colored 
with accordance to the Average clustering group.  

The noteworthy that the samples test 1, test 2 and test 3 samples 
are extremely close to 14-EGY-LTIN and 15-EGY-NTIT, i.e. to the 
yellow lead tin and of course to the yellow nickel titanium that we 
are interested in as it is the measured based on which the 3 tests 
were made. The two samples that are separated from this group 
with some methods, i.e. No 12 zinc white and No 13 titan, score high 
in PC1, but score also high in PC2 (which represents the 12% of the 
initial data variation) and this the special characteristic of these two 
samples compared to the remaining group of interest. 

 
Figure S9: Biplot showing the structure of the loadings from PCA for Comp 1 and 2. The large positive loadings of lower group of varia-
bles 420-640nm on component 1 that is the most spectral part of spectra have a strong influence in this component. The upper group of 

vectors loadings close to 0 indicate that the variable of respective wavelength 660-740nm has a weak influence on the component. 
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Figure S10: Κ-means clustering result for K=4, plotted on the first two PCs. 

Set 1: K-means Set 1 

The k-means method in the present study with k=4, indeed, has 
resulted to four groups with the group of interest to contain exactly 
the same samples as in Ward’s. 

Set 1: Wilks test  

Next is the Wilks value, the smaller the value, the better the sep-
aration. Average: 0.045395, Complete: 0.030659, Wards: 0.092423, K-

means: 0.045395. We notice that the lowest value is given by K-
means but the highest by Wards.  

Statistical Analysis Set 2 

Complete Linkage into 4 groups (Fig.11), and for Ward the divi-
sion into 4 (Fig.12). The group which includes the tests is high-
lighted in cyan. 
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Figure S11: Complete Linkage with 4 groups 

  

Figure S12: Ward in 4 groups 
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Below are included the Silhouette values, box plots of the differ-
ent methods that were used and they concern the order Average and 
Complete Linkage, Wards, Wards-D2. 

Silhouette values Set 2 

The Silhouette values for each group by method as well as the 
average value for each case, all of which are comparable. In Fig.S13 

these are shown for the Average and Complete Linkage and Ward’s 
method.  

The following Table (Table S4) shows the average values of the 4 
groups and Fig.S14 the box plot for the 4 clustering methods. Fig.S15 
is the same plot, as in Fig.7 main article but using as a label the upper 
color (left graph) and the lower color (right graph). The sample 
points for both graphs are colored with accordance to the Average 
clustering group. 

 

Figure S13: Plots of Silhouettes scores for Average (average 0.30), Complete Linkage (average 0.33) 
and Ward’s (average 0.33) respectively.  

TABLE S4 The average values of the 4 groups per wavelength 

Spectrum [1st ]  [2nd]    [3rd] [4th] 

620  127.0909  72.5  122.15  120.2500 

640 169.8182  80.5  159.70  152.9375 

660  183.0000  86.0  172.60  161.6875 

680  185.8182  85.0  182.15  164.8125 

700  193.0000  83.0  189.25  170.6875 

720  199.5455  88.0  190.65  167.6250 

740  198.8182  83.0  190.85  166.6250 

760  201.8182  85.0  195.00  167.5000 

780  204.0909  78.5  198.00  166.3125 

800  206.1818  82.0  200.70  167.7500 

820  204.5455  77.5  201.60  166.5625 

840  206.0000  79.0  201.35  164.0625 

860  209.0909  75.5  206.50  167.1250 

880  209.3636  75.0  205.50  163.0000 

900  208.8182  73.0  208.60  163.0000 

920  210.2727  73.0  210.55  166.2500 

940  209.1818  69.0  207.90  163.8750 

960  209.5455  72.0  207.95  162.9375 

980  210.8182  65.0  210.70  162.6875 

1000  207.5455  63.0  206.15  155.4375 
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Figure S14: Box plot for: average 6 groups and Complete with 4 groups, Wards with 4 groups, Wards-2 with 4 groups 

 

Figure S15: Left: PCA score plots of the samples on the first two principal components. The color in sample points is according to group-
ing suggested from the Average Linkage. Right: The same plot when using as label for the sample points the lower underpainted color. 

The clustering for data set with k-means algorithm gives exactly 
the same clustering that includes all 3 tests, just like with dendro-
grams (Fig.S16). 

Statistical analysis of Set 3 

Sample No 38-YC-MAL (underlying red malachite) has been in-
dicated from cluster analysis to be an outlier. This is also confirmed 
from from PCA in Figure S17 where No 38-YC-MAL scores very low 
in the first PC, around -20 while all other samples score above -10. 

We next remove the sample 38-YC-MAL from the data set, as 
confirmed outlier, and repeat the analysis for the remaining 48 sam-
ples. Hierarchical clustering for the four linkages lead to dendro-
grams presented in Figs S18, S19. 

The grouping of all samples of the set 3 is also confirmed by the 
Silhouette values for each group per method as well as their average 
value as are shown below in Fig.S20. A graphical representation of 
the clustering results using PCA as a projection method also sup-
ports the above result and produces Fig. S21. 

The group we are interested in is group 2 for the average and 
ward’s method and is group 3 for complete linkage.  
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Figure S16: K-Means for 4 groups 

 

Figure S17: Α scatter plot of the set 3 data scores in the first two principal components. 
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Figure S18: Complete linkage with 3 groups 

 

Figure S19: Ward with 4 groups. 
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Figure S20: Silhouette scores for average, complete and ward with average ranging between 0.24-0.30. 

A graphical representation of the clustering results can be seen using PCA as a projection method and produces Fig.21.  

 

Figure S21: PCA for average, complete and ward. 
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Figure S22: Left: PCA score plots of the samples on the first two principal components. The color in sample points (numerical codes) is 
according to grouping suggested from the Average Linkage (Fig.8 main article). Right: The same plot when using as label for the sample 

points the lower underpainted color with their pigment name. 

Fig.S22 is the same plot of Fig.10 (main article) but using as a 
label of the upper color (left graph). The sample points for both 
graphs are colored with accordance to the Average clustering 
group. 

Finally, the k-Means method below also agrees with the group 
containing the 3-test close to the expected No 27 and is shown in 
blue in Fig.S23 below. 

Complex Analysis indices plots 

Notes: a) not all data were suitable for analyses by some of the 
14 indices, b) in all plots the X axis gives the samples on an ordered 
increasing number (1-49). The last three points are the 3 tests, c) All 
plots are Fig.S24 – S61. 

 

Figure S23: K-Means clustering, where group in green is the group with the 3 tests and concur with previous methods. 
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1. SET 1: EGYPTIAN BLUE 

 

Figure S24: Egyptian Blue Higuchi Dimension without and with interpolation and subsequent boxes.  

 

Figure S25: Egyptian Blue Tug of war Dimension without, with interpolation and with subsequent boxes 

 

Figure S26: Egyptian Blue Petrosian Dimension without interpolation  

 

Figure S27: Egyptian Blue Shannon Entropy without and with interpolation  
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Figure S28: Egyptian Blue Approximative entropy without and with interpolation 

 

Figure S29: Egyptian Blue Permutation entropy without and with interpolation  

 

Figure S30: Egyptian Blue Kolmogorov complexity GZIB without, with interpolation and with subsequent boxes 

 

Figure S31: Egyptian Blue Kolmogorov complexity ZLIB without, with interpolation and with subsequent boxes 

 

Figure S32: Egyptian Blue Hurst coefficient without and with interpolation. 
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Figure S33: Egyptian Blue Detrended fluctuation analysis without, with interpolation and with subsequent boxes 

 

Figure S34: Egyptian Blue Lyapunov exponent with subsequent boxes 

 
2. SET 2: RED Cadmium 

 

 

Figure S35: Red cadmium Higuchi dimension without, with interpolation and with subsequent boxes 

 

Figure S36: Red cadmium Tug of war dimension without, with interpolation and with subsequent boxes 
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Figure S37: Red cadmium Katz dimension without, with interpolation and with subsequent boxes 

 

Figure S38: Red cadmium Petrosian dimension without interpolation 

 

Figure S39: Red cadmium Sevcik dimension without, with interpolation and with subsequent boxes 

 

Figure S40: Red cadmium Shannon Entropy without and with interpolation 
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Figure S41: Red cadmium Approximative entropy without and with interpolation. 

 

Figure S42: Red cadmium Sample Entropy without and with interpolation 

 

Figure S43: Red cadmium Permutation entropy without and with interpolation 

 

Figure S44: Red cadmium Komogorov complexity - GZIB without, with interpolation and with subsequent boxes 

 

Figure S45: Red cadmium Kolmogorov complexity - ZLIB without, with interpolation and with subsequent boxes 
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Figure S46: Red Cadmium: Hurst without and with interpolation 

 

 

Figure S47: Red cadmium Detrended fluctuation analysis without, with interpolation and with subsequent boxes 
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Figure S48: Red cadmium Lyapunov exponent for interpolated and subsequent boxes. 

 
 

3. SET 3: CADMIUM YELLOW 

 

Figure S49: Cadmium Yellow Higuchi dimension without, with interpolation and with subsequent boxes 

 

Figure S50: Cadmium Yellow Tug of war dimension without, with interpolation and with subsequent boxes 

 

Figure S51: Cadmium Yellow Katz dimension without, with interpolation and with subsequent boxes 
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Figure S52: Cadmium Yellow Petrosian dimension without and with interpolation  

 

Figure S53: Cadmium Yellow Sevcik dimension without, with interpolation and with subsequent boxes 

 

Figure S54: Cadmium Yellow Approximative entropy without and with interpolation 

 

Figure S55: Cadmium Yellow Sample entropy without and with interpolation 
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Figure S56: Cadmium Yellow Permutation entropy without and with interpolation  

 

Figure S57: Cadmium Yellow KC GZIB without, with interpolation and with subsequent boxes 

 

Figure S58: Cadmium Yellow KC ZLIB without, with interpolation and with subsequent boxes 

 

Figure S59: Cadmium Yellow Hurst coefficient without and with interpolation 

 

Figure S60: Cadmium Yellow DFA without, with interpolation and with subsequent boxes 
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Figure S61: cadmium yellow Lyapunov exponent with interpolation and with subsequent boxes  

Example of computing allometric scaling fractal dimension and other complexity measures 

For all indices these part are similar: 
1. Download Fiji version 20230801-1717 (https://downloads.imagej.net/fiji/archive/20230801-1717/) 
2. Download ComsystanJ plugin (https://github.com/comsystan/comsystanj/releases) 
3. Unzip the ComsystanJ zip file and copy the folder to the Fiji's plugins folder. 
4. Fiji - Plugins - Comsystanj - 1D sequence(s) - Sequence opener 
Dataset must to be in cvs format. 
  
Only point 5 will differ. Instead of Allometric scaling, select from the list the desired index (Katz, Petrosian, etc). 
Ex: 
5. Fiji - Plugins - Comsystanj - 1D sequence(s) - Allometric scaling 
or 
5. Fiji - Plugins - Comsystanj - 1D sequence(s) - Katz dimension 
or  
5. Fiji - Plugins - Comsystanj - 1D sequence(s) - Petrosian dimension 
etc. 
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