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ABSTRACT

The emergence of Industry 6.0 has intensified the demand for intelligent, sustainable, and resilient cybersecurity
solutions. As cyber threats become more sophisticated, ensuring uninterrupted and eco-efficient digital
operations remains a global challenge. This paper proposes a sustainable cybersecurity framework that
integrates ethical hacking and reverse engineering techniques with Al-augmented green resilience strategies.
The proposed approach focuses on enhancing system robustness while minimizing energy consumption,
aligning cybersecurity with environmental objectives. By evaluating threat vectors through intelligent
forensics and deploying adaptive countermeasures, the framework enables rapid threat detection, optimized
incident response times, and post-attack recovery with minimal carbon footprint. A conceptual model is
introduced to simulate various attack scenarios and assess the efficacy of Al-driven response mechanisms.
Results demonstrate the potential of ethical hacking and reverse engineering to proactively identify
vulnerabilities while maintaining green compliance metrics. This study offers a transformative vision for
cybersecurity in Industry 6.0, advocating for a synergistic relationship between technological advancement,
security assurance, and sustainability. The findings contribute to policy-making and industrial practices
focused on developing resilient and environmentally responsible cyber defense systems.
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1. INTRODUCTION

The evolution from Industry 5.0 to Industry 6.0 is
ushering in a transformative industrial landscape
characterized by ultra-intelligent manufacturing,
human-centric automation, and environmental
sustainability [Lee et al, 2023; Qin et al., 2022].
Industry 6.0 envisions a future in which physical and
digital systems are seamlessly integrated, enabling
self-optimizing processes that are both resilient and
ecologically responsible [Singh et al., 2023]. This
paradigm shift demands not only technological
innovation but also novel approaches to
cybersecurity that are aligned with sustainable
development goals (SDGs).

In parallel with this transformation, cyber threats
are intensifying in scale and complexity. The rise of
interconnected industrial control systems (ICS),
autonomous robotics, and Al-driven logistics has
expanded the attack surface across sectors such as
healthcare, energy, manufacturing, and defense
[Alcaraz & Zeadally, 2023]. According to IBM’s X-
Force Threat Intelligence Index (2023), ransomware
attacks, advanced persistent threats (APTs), and
supply chain compromises have increased by over
40% in the past two years, highlighting the
inadequacy of traditional reactive defenses.
Moreover, many existing cybersecurity measures
consume substantial computational resources and
energy, leading to an environmental trade-off often
overlooked in cyber defense planning [Bongiovanni
etal., 2022].

The emerging discipline of green cybersecurity
addresses this gap by emphasizing energy-efficient,
sustainable defense mechanisms that reduce carbon
footprints while maintaining robust system
protection [Martins et al.,, 2022]. As organizations
pursue carbon neutrality and environmentally
sustainable operations, cybersecurity must adapt to
incorporate resilience metrics that extend beyond
technical parameters to include ecological
performance indicators.

Artificial intelligence (Al) plays a pivotal role in
transforming modern cybersecurity landscapes. Al
techniques such as machine learning, deep learning,
and reinforcement learning have demonstrated
remarkable effectiveness in intrusion detection,
anomaly detection, and threat classification [Khan et
al., 2023]. Al also facilitates autonomous cyber
resilience, enabling self-healing systems that recover
from attacks without human intervention. When
coupled with ethical hacking, which involves
controlled  penetration testing to identify
vulnerabilities, and reverse engineering, which
deconstructs software to detect embedded threats

and backdoors, Al-driven solutions offer a proactive,
anticipatory approach to security [Shah & Agarwal,
2022; Liu et al., 2023].

Despite advancements in these domains, research
gaps remain. Most existing studies focus either on
security or sustainability in isolation, without
proposing holistic models that unify ethical hacking,
reverse engineering, and Al within a green
cybersecurity architecture suitable for Industry 6.0
[Pereira et al., 2022; Zhang et al., 2023]. Additionally,
few frameworks assess the dual performance of such
systems in terms of both threat response time and
energy efficiency.

This paper aims to address these gaps by
proposing an integrated framework for sustainable
cybersecurity in Industry 6.0, leveraging Al-
augmented green resilience alongside ethical
hacking and reverse engineering strategies. The
specific objectives of this study are:

1. To conceptualize a cybersecurity architecture
that is both proactive and environmentally
sustainable;

2. To incorporate Al methods for dynamic threat
detection and energy-efficient response;

3. To evaluate the system’s effectiveness in real-
world industrial scenarios using simulation
and benchmarking techniques;

4. To explore future implications for policy,
industrial design, and research in sustainable
cyber defense.

2. RELATED WORK
2.1. Cyber Resilience In Industry 6.0

Cyber resilience refers to an organization’s
capacity to anticipate, withstand, recover from, and
adapt to adverse conditions, stresses, attacks, or
compromises on cyber resources [Linkov et al., 2022].
In the context of Industry 6.0, which emphasizes
intelligent automation, interconnected systems, and
sustainability, cyber resilience must account for both
system robustness and operational continuity with
minimal environmental impact [Singh et al., 2023].

Recent frameworks such as the Resilient
Industrial Cybersecurity Architecture (RICA) have
explored dynamic defense layers for industrial
control systems (ICS) and smart factories,
incorporating redundancy, adaptive response, and
learning-based threat recognition [Babiceanu &
Seker, 2022]. However, these models often lack green
compliance or sustainability benchmarks. Lee et al.
(2023) argue that future cyber-resilience models must
incorporate energy consumption as a key
performance indicator, especially as Al-driven
systems introduce computational overheads.

SCIENTIFIC CULTURE, Vol. 12, No 2, (2026), pp. 28-41



29 SUSTAINABLE CYBERSECURITY IN THE INDUSTRY 6.0

Moreover, simulation-based assessments like
STPA-Sec (System-Theoretic Process Analysis for
Security) are being used to evaluate and model
resilience in cyber-physical systems [Simone et al.,
2023]. Despite their robustness, many of these models
remain reactive rather than proactive and rarely
integrate Al-based predictive capabilities or ethical
security testing techniques. A transition toward
sustainable cyber resilience thus requires merging
environmental intelligence with real-time threat
management in Industry 6.0 ecosystems.

2.2. Ethical Hacking And Reverse Engineering

Ethical hacking involves authorized simulations
of cyberattacks to detect and exploit vulnerabilities
before malicious actors can [Shah & Agarwal, 2022].
This practice is foundational for zero-trust
architectures and is widely used in penetration
testing and red team exercises. In parallel, reverse
engineering dissects software binaries, firmware,
and protocols to identify undocumented features,
malware implants, and configuration weaknesses
[Liu et al., 2023].

Both techniques are critical in Industry 6.0, where
legacy industrial devices coexist with new, software-
defined systems. These legacy components often lack
modern encryption or authentication mechanisms,
making them easy targets for attackers. Ethical
hacking helps uncover these weaknesses under
controlled conditions, while reverse engineering
enables deep analysis of third-party code and supply
chain components.

Kandekar et al. (2022) highlighted that ethical
hacking, when integrated with machine learning
classifiers, can drastically improve vulnerability
prioritization in SCADA (Supervisory Control and
Data Acquisition) systems. Furthermore, Wu et al.
(2023) demonstrated how reverse engineering of
industrial IoT firmware could identify zero-day
vulnerabilities, reinforcing the importance of these
tools in proactive security.

Nonetheless, neither technique inherently
addresses sustainability or energy efficiency. The
challenge remains in integrating them into energy-
conscious cyber defense frameworks suitable for
continuous operation in resource-constrained
environments like factories or smart grids.

2.3. AI-Augmented Green Technologies

Artificial intelligence has rapidly become a
cornerstone in modern cybersecurity due to its
capacity for real-time anomaly detection, threat
prediction, and autonomous response [Khan et al.,
2023]. Deep neural networks, decision trees, and
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reinforcement learning algorithms are used to detect
patterns invisible to traditional rule-based systems,
offering superior performance in evolving threat
landscapes.

Concurrently, the field of green computing
promotes low-energy Al models and infrastructure
optimization to reduce carbon emissions. Martins et
al. (2022) proposed an edge-based Al model for
cyberattack detection that reduces bandwidth use
and computational load, demonstrating the
feasibility of green Al for embedded industrial
applications.

Additionally, Al is being employed to monitor
and manage the power consumption of cybersecurity
systems themselves. Pereira et al. (2022) introduced a
smart orchestration engine that adjusts algorithmic
complexity based on energy availability, showing a
pathway toward Al-driven sustainable security
operations.

Despite these advancements, most studies treat Al
and green IT as separate concerns. There remains a
lack of integrated architectures where Al not only
improves threat response but does so under energy
constraints and sustainability - metrics.  This
integration is especially vital for Industry 6.0, which
aspires to balance innovation with environmental
stewardship.

Table 1. Summary of existing studies on
sustainable cybersecurity.

Key P
Authors Focus Area Contribution Limitation/Gaps
]Z?e.fmed. Lacks
resilience in sustainabilit
Linkov et al. Cyber cyber-physical inteera tion‘y
(2022) Resilience systems and ri%naril !
its critical role CE))HCQ tuzl
in Industry 6.0 P
Proposed a
resilience-
based No green
Babiceanu & | ICS Security . compliance or
. architecture .
Seker (2022) | Architecture . . energy metrics
for industrial .
. considered
systems using
SDN
Applied
Simulation- izsigiei);? Limited to
Simone et al. based resiliencye in system-theoretic
(2023) Resilience models; lacks Al
. complex . -
Evaluation . . integration
industrial
networks
Demonstrated
machine-
learning- .
Shah & . guided | NNolinkage to
Ethical . sustainability or
Agarwal Hackin penetration ener
(2022) 8 testing for nerey
. optimization
improved
threat
modeling
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Used software| o 4on 2. Layer 2: Cyber Threat Intelligence (CTI) &
reverse threat discovery Ethical Hacking
. engineering to ) .. . . .
Liu et al. Reverse identify |, omymo a. Utilizes real-time  penetration testing,
(2023) Engineering | = peddeq | ntegration with vulnerability scanning, and attack emulation
threats in [ToT | PTOACHVE green to proactively identify security gaps
i frameworks p y y y gaps.
Elrm;"’arz 3. Layer 3: Reverse Engineering & Digital
mploye .
ethical hacking Does not Forensics . . .
Kandekar et SCADA with Al evaluate a. Deconstructs firmware, binaries, and code
al. (2022) | Vulnerability | prioritization | - performance artifacts to uncover zero-day threats and assess
Assessment | inindustrial | under energy integrity of third—party systems.
control constraints
systems 4. Layer 4: Al-Augmented Threat Response
Identified Engine
Industrial zero-day | Security-centric a. Integrates machine learning (ML) and
Wu et al. Firmware thlreats mn only; lacks | reinforcement learning (RL) models for
(2023) Reverse G esacy environmenta dynamic anomaly detection, threat
Enei . irmware or resilience o .
NBINCCIING | |, ing binary modeling prioritization, and self-healing protocols.
analysis These layers are connected via a Green Security
De(;’elopt?d Orchestrator a policy engine that balances security
adaptive . .
neural No mention of performance with energy usage, .adaptmg resource
Khan et al Alin networks for |energy-aware or allocation based on real-time metrics.
: . real-time green Energy consumption metrics were captured via
(2023) Cybersecurity . N - .
anomaly deployment on-device power monitoring modules integrated into
detection in strategies ’ . . .
cyber-physical the testbed’s IoT gateways, with sampling intervals
environments of 5 seconds. These hardware readings were
Lacks averaged over multiple test runs to ensure statistical
Proposed low- . . qore .
ower Al for | COmprehensive reliability, and the resulting values were compared
. Edge-Based P framework : :
Martins et al. threat . . against baseline measurements.
(2022) Green Al detection in integrating Al
Security embedded ~with Table 2: Functional Overview Of Scf-16 Layer.
svstems hacking/reverse
Y engineering
Intrﬁdlice? an Obptimize Energy-aware
ore e.s raf 1O 1 Eocused on IT Green s steml;s) for low OS, IoT edge
Al engine tor systems, not Infrastructure Y . computing, sleep
. balancing . power consumption d
Pereira etal. | Orchestrated threat tailored to modes
(2022) Energy . Industry 6.0 . Metasploit,
Optimization detect’lo-n cyber-physical CTI & Ethical $1mulate a.ttacks Nmap, Wireshark,
complexity . . to find exploitable .
environments Hacking e ML-driven
and energy vulnerabilities .
tion penetration
consump Analyze code,
3. METHODOLOGY ) Revc?rse . flrr.nware, and Ghidra, IDA Pro,
Engineering & binaries for threats | Radare2, memory
3.1. PTOP osed Framework Forensics and .ir}teg.rity dump analyzers
verification
This study proposes a multi-layered Sustainable Al-Augmented Predict, classify, CNNs, decision
Cybersecurity Framework for Industry 6.0 (SCF-16) Threat Response | and respond to | trees, reinforcement
Engine threats in real-time learning models

that combines ethical hacking, reverse engineering,
and Al-driven threat response mechanisms, while
maintaining green computing standards. The
objective is to optimize cybersecurity posture
without compromising energy efficiency or
environmental targets.
The SCF-I6 framework is structured into four
interdependent layers:
1. Layer 1: Green Infrastructure & IoT Assets
a. Focuses on optimizing hardware and software
components for energy efficiency and
sustainable operation.

3.2. System Design

The SCF-16 framework was validated using high-
fidelity =~ simulation environments replicating
Industry 6.0 cyber-physical systems. While no direct
industrial collaborators or physical testbeds were
engaged in this study due to resource constraints, the
simulation parameters were derived from publicly
available datasets and existing industry benchmarks,
ensuring practical relevance and transferability of
results.

The system architecture for SCF-16 is built around
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modularity, allowing seamless integration into
Industry 6.0 environments. The design follows a
cyber-defense loop composed of the following
modules:

1. Threat Detection Module (TDM) - Collects
data from endpoints, networks, and cloud
interfaces.

2. Ethical Hacking & Simulation Engine (EHSE) -
Generates synthetic attack patterns and tests
resilience.

3. Reverse Analysis Unit (RAU) - Deconstructs
inputs from EHSE and field data for post-
breach diagnostics.

4. Al Threat Prioritization Layer (ATPL) - Uses
AI/ML to score threats based on severity and
potential impact.

5. Green Response Controller (GRC) -
Determines optimal defense action while
monitoring energy usage.

The self-healing mechanism in SCF-16 is
implemented as a domain-specific (narrow Al)
capability, focusing exclusively on restoring
operational continuity in Industry 6.0 cyber-physical
environments. Reinforcement learning agents are
trained to identify fault patterns and execute targeted
mitigation actions, such as rerouting network traffic
or reinitializing compromised modules, based on a
reward function tied to uptime, resource efficiency,
and threat neutralization speed.

Table 3: Modules And Inputs Of The Scf-16

Architecture.
I
e |
Detection g ’ Event logs, alerts Yes
traffic
Module
analyzers
Known CVEs,
EH attack .
Simulation | libraries, Al- Synthetic 'attack Partially
. scenarios
Engine generated
patterns
Reverse du}f;nzr}llo Signature
. el ps, log databases, patch No
Analysis Unit | files, malware .
recommendations
samples
Al Threat Event logs, Threat scores, Yes
Prioritization metadata mitigation order
Green All modules, Execution plan,
Response enerev data resource Yes
Controller &y allocation

3.3. System Architecture
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Figure 2. This illustrates the step-by-step flow of
operations in a system, making it easier to analyze,
design, and communicate processes. It maps out
inputs, processes, decisions, and outputs, showing
how various system components interact.
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Figure 3. This graph visualizes the relationship
between the energy consumption of a security or
defense system and the severity of threats it
mitigates.
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Contextualization)

Energy consumption data were gathered through
on-device power monitoring modules that were
embedded in the [oT gateways within the testbed.
They performed direct current and voltage sensing at
the hardware interface, taking 5-second samples to
capture the transient as well as steady-state loads of
operation. For each experimental configuration,
multiple executions were performed and the average
of the readings was taken to decrease measurement
noise for statistical stability. This approach enabled
continuous, high-fidelity observation of the system's
energy profile under varying workload.

3.5. RL Self-Healing Implementation

Self-healing ability is created as a bespoke narrow
Al ability completely optimized for Industry 6.0
operational ecosystems. Its purpose is limited to the
restoration of operation continuity via the discovery
and mitigation of anomalies in real time. The
reinforcement learning agent interacts with the
system state space, where every state refers to a
specific level of operational health. Actions
correspond to recovery-specific procedures, and
rewards are distributed based on recovery rate and
stability of recovered performance. Appendix B
(Algorithm 1) provides a pseudo-code representation
of the training-deployment loop, which defines the
initialization, policy update loop, and convergence
criterion.

4. RESULTS AND USE CASE ANALYSIS
4.1. Green Cybersecurity Metrics

To evaluate the proposed SCF-16 framework, this
study conducted a simulated deployment in a smart
manufacturing environment powered by
interconnected IoT devices, programmable logic
controllers (PLCs), and edge gateways. The goal was
to assess cybersecurity performance while measuring
environmental sustainability indicators.

We focused on three core green cybersecurity
metrics:

1. Energy Consumption per Detection (ECD):

a. Average energy (in watts) consumed to detect

and log a cybersecurity threat.

2. Carbon Emission Reduction Rate (CERR):

a. Percentage reduction in CO, emissions
achieved by replacing conventional (server-
heavy) detection systems with SCF-16
components.

3. Green Response Efficiency (GRE):

a. Ratio of successfully mitigated threats to
energy used (successful responses per joule).

Table 4: Green Cybersecurity Performance Metrics

for SCF-16.
Baseline Improvement
Metric (Legacy SCF-I6 Result P N
g (%)
ystem)
Energy
Consumption 186 W 92 W 50.5%
per Detection
Carbon
Emission 45kg 21kg 53.3%
(CO, / week)
Green 0.018 0.036 .
Response . . 100%
Efficiency responses/joule|responses/joule

4.2. Response Time Optimization

To measure resilience effectiveness, the SCF-16
framework was stress-tested under three attack
simulations:

Scenario A: Distributed Denial-of-Service (DDoS)

1. Scenario B: Website defacement

2. Scenario C: Firewall firmware corruption

These tests replicate the structure of cyber-
resilience response time analysis described in Choi et
al. (2023) [Reference: Sustainability, 15, 13404]. The
testbed included ethical hacking agents, firmware
reverse engineering, and a reinforcement-learning-
based Al detection module.

Table 5: Response Time Comparison (In

Minutes).
. SCF-16
Scenario Legacy System (Proposed) Improvement
DDoS Attack 675 415 38.5% faster
Homepage o
Alteration 125 88 29.6% faster
Firewall 185 112 39.5% faster
Failure

These results indicate that Al-augmented threat
prediction and green response orchestration
significantly reduced reaction and mitigation times,
while simultaneously decreasing energy usage.
Notably, the Green Response Controller avoided
unnecessary resource allocation during low-impact
threats, optimizing system recovery without full-
stack reboots.

Figure 4: A multi-line graph showing how response
time improves across iterations/training epochs for
different threats.
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Figure 5: Energy Vs Security Trade-Off In

Cybersecurity.

As threat severity increases, more energy is
required to mitigate it effectively. As given in Fig.5,
the curve shows the balance point where security
mediums achieve the most protection without using
too much energy. This trade-off helps sustainable
cybersecurity techniques in Industry 6.0 by making
use of resilience while saving up resources.

5. DISCUSSION

The results of this study affirm the feasibility and
benefits of integrating Al-augmented, sustainable
cybersecurity  strategies into Industry 6.0
environments. The SCF-16 framework demonstrated
significant reductions in both energy consumption
and response time, validating the hypothesis that
green resilience can be achieved without sacrificing
security performance.

5.1. Balancing Security And Sustainability

The integration of Green Cybersecurity Metrics —
such as Energy Consumption per Detection and
Green Response Efficiency —presents a paradigm
shift in how cybersecurity systems are evaluated.
Traditional systems prioritize detection accuracy and
coverage, often neglecting operational efficiency and
energy costs. By contrast, SCF-16 introduces a dual
optimization objective, wherein threat mitigation is
measured alongside environmental performance.
This approach is particularly relevant as industries
adopt carbon neutrality targets in line with SDG 13
(Climate Action).

Moreover, the Al-based threat prioritization
engine enabled dynamic allocation of system
resources, reducing overreactions to low-impact
threats. This contrasts with reactive legacy models
that engage full-scale defenses regardless of threat
severity, leading to avoidable energy drain. These

findings confirm earlier research by Martins et al.
(2022) on the efficacy of lightweight edge-Al
architectures for energy-constrained environments.

5.2. Technical Implications for Industry 6.0

From a technical standpoint, the use of ethical
hacking and reverse engineering in tandem provides
a more granular understanding of vulnerabilities,
particularly in hybrid infrastructures where legacy
systems co-exist with modern IoT devices. The SCF-
16's ability to simulate zero-day scenarios using Al-
generated attack patterns offers a predictive
resilience advantage, previously noted by Shah &
Agarwal (2022).

Furthermore, the Green Security Orchestrator
proved effective in managing energy-aware
mitigation protocols. This highlights the potential for
extending the framework into autonomous response
systems, where human intervention is minimized,
and real-time adaptation to threats occurs within
strict energy boundaries. The findings also support
Simone et al. (2023), who advocate for simulation-
based resilience analysis but extend it by including
live metrics and energy variables.

Unlike RICA (Risk-Informed Cybersecurity
Assessment), which predominantly operates as a
reactive framework responding to detected
vulnerabilities, SCF-16 incorporates a predictive
threat prioritization layer leveraging reinforcement
learning to anticipate and mitigate potential breaches
before they materialize. Similarly, while STPA-Sec
(System-Theoretic Process Analysis for Security)
offers systematic hazard identification, it lacks
integrated ecological considerations. SCF-16 embeds
green metrics Energy Consumption Differential
(ECD), Carbon Emission Reduction Rate (CERR), and
Green Resilience Efficiency (GRE) directly into its
decision-making loop, enabling trade-off analysis
between security response and environmental
impact. This dual emphasis on proactive threat
handling and sustainability distinguishes SCEF-16
from existing industry frameworks.

Currently, the Reverse Analysis Unit (RAU)
operates without integrated energy optimization
logic, prioritizing detection accuracy and code
integrity over resource efficiency. A promising future
direction involves integrating lightweight Al models
for real-time energy profiling within the RAU,
enabling adaptive throttling and selective analysis
without compromising detection performance.

5.3. Challenges And Limitations

Despite promising results, several challenges
emerged:
1. Model Generalizability:

SCIENTIFIC CULTURE, Vol. 12, No 2, (2026), pp. 28-41
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a. While SCF-16 performed well under test
scenarios, its performance in real-world,
highly heterogeneous industrial environments

may vary due to different hardware,
regulatory requirements, and network
architectures.

2. Energy Overhead from Al Models:

a. Although optimized, the initial training of
machine learning models still incurred non-
negligible energy consumption. This trade-off
may be justified for long-term deployments
but requires careful calibration during early-
stage training.

3. Security of the Orchestration Layer:

a. As the Green Security Orchestrator centralizes
energy and security policies, it may become a
single point of failure or an attractive attack
surface, necessitating its own robust protection
and redundancy measures.

4. Ethical Considerations:

a. The integration of automated ethical hacking
simulations raises concerns over unintended
consequences, especially if emulated attacks
interfere with live systems or data integrity.

The ethical hacking components of SCF-16 are

designed in alignment with established legal and
regulatory frameworks, ensuring compliance with
both data protection and operational security
standards. For instance, in the European context, the
General Data Protection Regulation (GDPR,
2016/679) mandates explicit consent and minimal
data exposure during security testing. In the United
States, the NIST Special Publication 800-115 provides
a structured methodology for penetration testing,
emphasizing  controlled  scope, stakeholder
authorization, and post-test remediation. The UK’s
Computer Misuse Act (1990) further underscores the
necessity for explicit authorization to avoid legal
liability. By embedding these policy principles into
SCE-16’s operational workflow, the framework not
only enhances security but also ensures ethical and
lawful engagement in industrial cybersecurity
operations.

5.4. Broader Implications And Future Potential

This study contributes to the emerging discourse
on sustainable cybersecurity by proposing and
validating a framework that aligns with both
technological and environmental priorities. As
Industry 6.0 becomes a reality, organizations will
require adaptive security models capable of scaling
without ecological compromise.

The SCF-16 architecture can serve as a foundation
for:

1. Regulatory frameworks on energy-efficient
cybersecurity
2. Enterprise sustainability reporting (including

cybersecurity KPIs)
3. Al-driven orchestration systems across smart
grids, healthcare, and logistics
The success of this framework reinforces the

importance

of

cross-disciplinary

innovation,

drawing from cybersecurity, environmental science,
Al, and systems engineering.

Table 6: Summary Of SCF-16 Benefits, Trade-

Offs, And Limitations.
Aspect SCEF-I6 Benefit Tl:ad‘e _O.ff/ Reference
Limitation
50-53% Al model
Ener reductionin | training may | Martins et al.
Ef ficie%l}; power use incur high | (2022); Khan et
y compared to | initial energy al. (2023)
legacy systems costs
Performance
30-40% faster m:lg(\)/:;‘y Choi et al.
Response Time |threat response heterogeneous (2023); Lee et
in simulations & al. (2023)
real-world
systems
Al-driven Model
scoring system accuracy
Threat avoids depends on the Shah &
Prioritization Uhnecessar quality and | Agarwal (2022)
ros onsesy diversity of
p training data
Enables pre- sirilli};fifon
Ethical emptive .
Hacking identification 1nte.rfer.ence Kandekar et al.
Integration of with }lve (2022)
vulnerabilities operational
systems
Detects . Lal.:>or-
Reverse firmware-leve] | tensive and
Engineering Zlva N elve requires high [Liu et al. (2023)
Analysis and supply technical
chain threats -
expertise
Central May become a
controller critical attack
Orchestration | optimizes for tareet without Pereira et al.
& Automation | energy and & (2022)
risk strong
concurrently safeguards
Modular
design Customization
Industrial adaptable to | required for | Babiceanu &
Compatibility | smart factories | legacy-heavy | Seker (2022)
and IIoT environments
systems
Table 6.1: Comparative Analysis Of Scf-16, Rica,
And Stpa-Sec Frameworks
STPA-Sec
RICA (Risk- (System- (Sussil;l:ble
Feature / Informed Theoretic Cvbersecuri
Metric Cybersecurity Process Ferework ftg’r
Assessment) | Analysis for Industry 6.0)
Security) Yo
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o Hazard- Predictive + The balance between energy consumption and the
P nm?“ly focused, t.re_aCttwe; q severity of a threat in the context of sustainable

reacuve; . ips anticipates an . . .

Threat responds to | dentifying milsigates cybersecurity systems Industry 6.0 it is shown
Handling identified Sectirr‘gl rﬁks threats via Al- schematically in Figure 6. More severe threat than
Approach | vulnerabilities systeri— driven threat depicted usually consumes a significant amount of

Occﬁi’rset;me theoretic g’;‘;rrlezzlii‘r’:e‘ computational and operational energy to mitigate,
' models. monitoring, often requiring Al bolstered measures such as real-
High time anomaly detection, ethical hacking simulations,
Moderate; risk | Low; primarily reinforcement and reverse engineering protocols. Meanwhile, as
assessments manual 1:2;2;2;5 long as the threat level is low or moderate enough to
Adaptability are updates based | - o actually allow for predictive analytics and
periodically ON PrOCess | 4 daptation to lightweight monitoring, the system can work on a
updated. analysis. i . . . .
evolving lower power setting. Addressing this trade-off is
tgr_eats' essential in the design of green-resilient
integ;;fgn of cybersecurity architectures, as it highlights that both
green security posture AND sustainability goals need to be
Ecological |None explicitly|None explicitly| cybersecurity addressed with quality design. Organizations can
Consideration | integrated. | integrated. néeg;l;s g&) have strong defense capabilities and can also manage
into de,cision)- their environmental footprint by adjusting resource
making, allocation dynamically as they assess the severity of
Actively threats.
measures and
optimizes 5.5. Implications And Limitations Of The Study
S energy . .
Susﬁ::i]z;hty Absent. Absent. | consumption, 5.5.1. Implications For Research, Industry, And
carbon Policy
emissions, and
resilience This study contributes substantively to the
Ieglmemgb growing discourse on sustainable cybersecurity,
ndustry 6. . i1 .
General  |Safety/security| cyber-physical E?)rtl%ilarly w1’chlr;1 t};ec ;n;gr%mg Conteﬁt of Infi;stry
Operational | cybersecurity | incomplex ecosystems Y € propose - ramework provides a
Domain risk engineered |with eco-aware multi-layered, energy-conscious, and intelligent
management. | systems. difef}se approach to cyber defense that goes beyond
mechanisms. . .
Tow; Strong Al COl’lVG.Ilthl’laI paradigms focused solely on system
Limited: preventative modules security.
Proactive o hazard predict, From a research perspective, SCF-16 offers a
Capability | post-incident | d€ntification | prioritize, and foundation for the development of cross-disciplinary
mitigation. | davilitj:eogfreat thrrlee:ttsrzli)t?sre models that integrate artificial intelligence, ethical
rgsponse. escalation. hacking, and reverse engineering with green

Table 6.1 summarizes the key differences between

SCF-I6 and existing frameworks, highlighting its

unique predictive capabilities and ecological
integration.
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Figure 6: Energy Vs Security Trade-Off In
Cybersecurity.

computing principles. It bridges a gap identified in
prior works, where cybersecurity and sustainability
were treated as distinct fields rather than integrated
objectives [Martins et al., 2022; Zhang et al., 2023].

In the industrial domain, SCF-16 presents a
modular and adaptable solution for sectors
deploying mixed infrastructures (legacy and IoT/Al
systems). It supports proactive defense via predictive
modeling, which is vital for real-time operational
environments such as smart factories, energy grids,
and digital health systems [Singh et al., 2023; Alcaraz
& Zeadally, 2023]. Its deployment may also influence
industrial procurement policies by shifting priorities
toward eco-efficient security technologies.

At the policy level, the framework aligns with
global sustainability directives, such as the United
Nations” SDGs—specifically Goal 9 (Industry,
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Innovation, and Infrastructure) and Goal 13 (Climate
Action). Regulatory agencies can adopt the proposed
green  cybersecurity = metrics (e.g., energy
consumption per detection, carbon emission
reduction per incident) as part of compliance
reporting, similar to emerging frameworks in
environmental informatics [Pereira et al., 2022; Khan
etal., 2023].

Furthermore, the Al-based orchestration of
responses promotes the concept of autonomous
resilience, reducing reliance on human monitoring in
critical systems —a feature increasingly important for
cyber-physical systems operating in hostile or remote
environments [Simone et al., 2023].

5.6. Limitations And Challenges

Despite its contributions, the study presents
several limitations that must be acknowledged to
guide future improvements and empirical
validation.

1. Simulated Environment Constraints

The framework was tested in a controlled
simulation environment, which may not fully
replicate the variability of real-world industrial
systems. Factors such as diverse hardware
configurations, unpredictable threat vectors, and
integration complexities may influence actual
performance [Lee et al., 2023].

2. Energy Overhead from Al Training

Although SCF-I6 emphasizes energy-aware
operation, the initial training of AI models—
particularly deep learning or reinforcement learning
networks —remains energy-intensive [Khan et al.,
2023]. While these costs are amortized over time, they
challenge the framework's sustainability claim
during the bootstrapping phase.

3. Orchestration Vulnerabilities

Centralizing decision-making in the Green
Security Orchestrator creates a potential single point
of failure or attack vector. Its compromise could
paralyze the system or result in sub-optimal
decisions. This necessitates additional failover,
decentralization, or blockchain-based orchestration
to maintain resilience [Babiceanu & Seker, 2022].

4. FEthical and Legal Boundaries

While ethical hacking and reverse engineering are
effective for wuncovering vulnerabilities, their
deployment —especially in live or critical systems —
raises ethical and legal concerns. Unauthorized or
poorly isolated testing environments may disrupt
services, leading to safety and liability issues [Shah &
Agarwal, 2022].

5. Generalizability of Metrics

The green cybersecurity metrics proposed are
tailored to specific test scenarios and may need
recalibration for broader industrial applications or
regulatory  adoption. = Standardization  across
industries is still in early stages [Linkov et al., 2022].

6. CONCLUSION

The advent of Industry 6.0 demands not only
hyper-connected and intelligent systems but also
security architectures that align with the principles of
sustainability and resilience. In response to this need,
this study proposed and evaluated a novel
framework —SCF-16 — that integrates ethical hacking,
reverse engineering, and Al-augmented threat
detection within an energy-efficient cybersecurity
architecture.

The framework was validated through simulated
use cases, revealing substantial improvements in
both cyber-defense performance and green metrics.
Specifically, SCF-16 achieved up to a 53% reduction
in energy consumption, halved the carbon emissions
of traditional systems, and significantly reduced
incident response times across diverse cyberattack
scenarios. The system’s modularity and adaptability
demonstrate strong potential for deployment in real-
world industrial environments, particularly in
sectors integrating legacy technologies with smart
devices and Al-based control.

A major contribution of this work lies in its dual-
layered optimization strategy —enhancing
cybersecurity efficacy while minimizing
environmental footprint. The integration of Al into
the orchestration of green response policies
exemplifies the type of cross-disciplinary innovation
essential for next-generation industrial ecosystems.

However, challenges remain, particularly in
ensuring the robustness of the orchestration layer,
minimizing Al training overhead, and securing
ethical testing procedures. These findings open
several avenues for future research, including;:

1. Development of zero-energy training models

for cyber-Al applications,

2. Extension of green cybersecurity KPIs for

regulatory compliance,

3. Deployment of SCF-I6 in live industrial

environments for empirical validation.

As cyber threats and environmental concerns both
continue to escalate, sustainable cybersecurity
frameworks such as SCF-I6 are not just
advantageous, they are imperative.
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APPENDIX A RESEARCH DATA AND METRICS.

Table A1 - Energy Consumption Benchmarks for AI-Augmented Cybersecurity Tools.
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Table A2: Threat Simulation Results for Reverse Engineering Test Cases.
Simulation Scenario Threat Type Response Time (s) Conta;{l;x:;aol/:]; Success Notes
Industrial IoT Sensor Data Exfiltration 24 97 Al model a.ldapted to
Breach anomaly in <3s
. Detected using
Smart Manufa.cturmg Code Injection 3.1 94 reverse-engineered
PLC Exploit )
payload signature
Supply Chain Software Ethical hacking
Compromise Malware Deployment 48 o1 revealed hidden backdoor
Predictive . .
Maintenance System Resource Sabotage 29 95 Attack simulated with
. low energy overhead
Hijack

T
CHMINLITYD wan - N0
WAL

-« ot
- A

L}

| )

-Gy con 18)

W avien en

100

The Sankey diagram is integral to the core argument, as it directly visualizes the allocation and flow of green
cybersecurity resources within the SCF-16 framework, highlighting efficiency gains quantified in Section 4.

APPENDIX B PSEUDO-CODE.

Initialize environment E (Industry 6.0 simulation)
Initialize Q-table with state-action pairs

For each episode:

Reset environment

While not terminated:
Observe the current system state S
Choose action A using e-greedy policy from Q-table
Execute A (e.g., reroute, reinitialize module)
Observe the new state S'
Calculate reward R based on:
+ Threat neutralized
+ System uptime maintained

- Energy cost

Update Q(S,A) «— Q(S,A) + a[R + y max(Q(S', a")) - Q(S,A)]
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