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ABSTRACT 

Wireless Sensor Networks (WSNs) represent a fundamental part of current Internet of Things (IoT) systems, 
allowing for constant monitoring in smart cities, the environment, and industrial systems. However, a 
fundamental limitation of these networks over long-term operation is uneven energy consumption and the 
energy-hole problem that arises around a static sink. To address these issues, this paper presents PSO-MSM, 
a sustainability-oriented communication protocol that combines multi-objective Particle Swarm 
Optimization (PSO) and adaptive mobile sink mobility. The protocol optimizes cluster head (CH) selection 
and dynamically adjusts the sink’s trajectory through multi-radius circular paths to balance the forwarding 
load across the sensing field. Optimization is performed jointly with consideration of residual energy, intra-
cluster compactness, and the proximity of each CH to the sink. This coordinated clustering-mobility design 
reduces long-distance transmissions, relieves hotspot depletion, and improves overall energy sustainability. 
Extensive ns-3 simulations demonstrate that PSO-MSM significantly enhances network lifetime, increasing 
the time to first-node-dead, half-nodes-dead, and last-node-dead events by 46% compared with LEACH, HEED, 
and PEGASIS. The protocol also achieves higher residual energy, improved packet delivery ratio, reduced end-
to-end delay, decreased channel congestion, and significantly lower energy imbalance. These results indicate 
that PSO-MSM provides an effective solution for smart city and IoT deployments, offering reliability, reduced 
maintenance, and improved sustainability for long-term operations where these issues are a major priority. 

KEYWORDS: Wireless Sensor Networks (WSN), Energy Efficiency, Mobile Sink, Clustering, Optimization, 
Particle Swarm Optimization (PSO), Multi-Objective Optimization, Smart Cities, IoT Sustainability, Energy-
Hole Mitigation, NS-3 Simulation. 
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1. INTRODUCTION 

The rapid growth of the Internet of Things (IoT) 
has accelerated the massive deployment of Wireless 
Sensor Networks (WSNs) in smart cities, 
environmental monitoring systems, precision 
agriculture, industrial automation, and intelligent 
infrastructure applications. These networks often 
comprise hundreds or thousands of unattended 
sensor nodes that continuously sense, process, and 
transmit data over long periods. Because these nodes 
have limited battery capacity and are often installed 
in areas where maintenance is expensive or 
impractical, energy efficiency is one of the most 
important design challenges in modern WSNs. As a 
number of studies point out, sustainable IoT 
ecosystems demand communication protocols that 
minimize energy consumption while maintaining 
acceptable levels of reliability, latency, and data 
delivery performance [1–4]. 

Clustering has long been implemented as an 
effective approach to reduce energy consumption 
and control communication overhead. In pioneering 
protocols such as LEACH [5], nodes are organized 
into clusters, and a Cluster Head (CH) is elected to 
aggregate and forward data to the base station (BS). 
Subsequent enhancements, such as HEED and 
PEGASIS [6,7], improved CH selection based on 
residual energy or node degree and utilized chain-
based routing for network stability and extended 
network lifetime. More recent methods employ 
intelligent CH selection and routing strategies to 
optimize energy use [1,8]. 

Despite these developments, ongoing challenges 
remain, including unequal energy consumption, 
traffic imbalance, and premature depletion of nodes 
near the sink [9,10], as highlighted in survey studies. 
A particularly critical problem in static-sink WSNs is 
the energy-hole problem, where nodes near the BS 
deplete their batteries faster due to heavy forwarding 
loads. This localized depletion can lead to network 
partitioning, coverage degradation, and loss of 
important sensing data, even when many outer 
nodes retain significant energy. Strategies such as 
energy-balancing algorithms, vice cluster head 
mechanisms, and multi-hop cooperative routing 
[3,11] have been proposed to address this problem. 
However, their effectiveness is limited when the sink 
remains stationary. 

Mobile-sink architectures have emerged as a 
promising solution to these inherent limitations. By 
moving the sink over time, the network can better 
distribute traffic loads. Recent efforts include circular 
mobility, random movement, and rendezvous point-
based trajectories [12], which have demonstrated 

considerable improvements in energy balance and 
network lifetime. However, most existing 
approaches treat sink mobility and clustering as 
separate processes, resulting in suboptimal CH 
selection, unnecessary long-range transmissions, and 
inconsistencies between cluster formation and sink 
location. 

Parallel to these developments, metaheuristic 
optimization techniques such as Genetic Algorithms, 
Ant Colony Optimization, and Particle Swarm 
Optimization (PSO) have shown great potential in 
solving multi-objective problems in WSNs. PSO, in 
particular, has been successfully applied to optimize 
routing structures, rendezvous point selection, and 
infrastructure deployment in IoT environments 
[12,13]. Moreover, privacy-focused research 
emphasizes designing IoT systems that enhance 
system performance while minimizing long-term 
environmental impact, operational overhead, and 
energy waste [4,14,15]. 

Another research focus is on improving reliability, 
trust, and security in IoT communication systems 
[17–19]. While these works primarily address data 
integrity rather than energy efficiency, they highlight 
the importance of strong and sustainable 
communication layers in large-scale IoT 
deployments. 

Despite significant advancements in clustering, 
mobile sink design, and optimization-based routing, 
three major research gaps remain. Many CH-
selection strategies rely on local heuristics and do not 
consider global optimization or anticipated sink 
positions. Most mobile sink schemes do not integrate 
sink movement with clustering, leading to 
misaligned routing paths and inefficient energy 
usage. Few studies analyze WSN design from a 
sustainability perspective, considering long-term 
maintenance reduction, energy balance, and 
environmental impact. 

To address these limitations, this paper proposes 
PSO-MSM, a coordinated clustering-mobility 
protocol that combines multi-objective PSO-based 
CH selection with adaptive multi-radius sink 
movement. The proposed framework is 
sustainability-driven, extends network lifetime, 
reduces energy imbalance, and supports long-term, 
low-maintenance IoT deployments. 

2. RELATED WORK 

WSNs are based on small nodes which are 
resource-constrained and run on small battery 
resources. Due to the fact that communication is the 
most energy-intensive operation in these nodes, a 
significant amount of literature exists aimed at 
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creating routing and clustering schemes that 
decrease the transmission overhead and increase the 
network lifetime. Early hierarchical protocols like 
LEACH [5], HEED and PEGASIS developed 
protocols such as clustering as a good way of 
reducing the consumption of energy. These protocols 
also added periodic cluster formation as well as 
rotation of the Cluster Head (CH) role to distribute 
the communication load. Yet, the use of random or 
semi-random selection of CH usually causes 
inefficient placement of CHs and fast energy loss 
among those nodes located close to the base station. 

Based on these original methods, the further 
development of research has included more 
informed CH-selection methods that take into 
consideration factors like the residual energy, 
neighborhood temperature, and distance within the 
cluster. More stable clustering structures and better 
performance have been shown using energy-
conscious routing schemes, which are based on the 
CH-election mechanism, and enhanced energy-
conscious routing schemes, based on the CH-election 
mechanism, which are called energy-aware routing 
schemes, and enhanced CH-election mechanisms, 
called viceCH, respectively, and based on the CH-
election mechanism, respectively. Such survey 
studies continue to point to the ongoing issues, such 
as disproportionate traffic load, localized congestion, 
and node failure in sink-surrounding areas, which 
remain an impediment to the sustainability of large-
scale deployments, such as in the case of sinkable 
devices, e.g., 02EnergyBalancing and MacSurvey. 

One of the key problems of the static-sink WSNs 
is the energy-hole problem whereby nodes near the 
base station bear a disproportionately high 
forwarding burden. With such nodes depleting 
quickly, the network can be subjected to coverage 
reduction or even disconnection whilst other distant 
nodes still have a lot of energy. A number of articles 
suggest the use of load-balancing, multi-hop 
cooperation, or vice-CH mechanisms to alleviate this 
implication of load-balancing. However, they are 
limited in the power of the sink at the fixed position. 
Therefore, the research has gravitated towards the 
mobile-sink solutions. The modern mobile-sink 
approaches consider circular paths, random motion 
patterns, and visitation programs based on 
rendezvouses [12]. Even though these methods 
spread out the energy consumption, most of them 
calculate the sink movement without considering the 
selection of CH and this may cause inefficient routing 
paths and increase communication expenses. 

Parallel to the above developments, metaheuristic 
optimization strategies have also received significant 

interest due to their capability to solve complex 
multi-objective problems in the design of a WSN. 
Methods founded on Genetic Algorithms, Ant 
Colony Optimization and, notably, Particle Swarm 
Optimization (PSO) have been utilized in solving a 
large variety of problems. PSO has also shown high 
optimization in a variety of problem areas, such as 
EV charging station location placement in WSNs [13], 
and rendezvous-point selection in WSNs, and 
sustainability-based IoT and cloud architectures. 
These papers demonstrate that PSO aids in the 
balancing of conflicting objectives like minimizing 
energy use, minimizing latency and maintaining 
coverage like in the case of PSO. 

The role of sustainability in the design of IoT and 
WSN has also been highlighted by the research 
community in the recent years. Green IoT systems [4] 
encourage the use of communications that use less 
power, cause less interference, and have longer node 
lifespan to achieve decreased environmental impact. 
The additional implementation of the sustainability-
related decision-making in smart environments 
works complementary to the further necessity of 
long-term, resource-efficient functioning in complex 
infrastructures, as noted in Complementary work on 
sustainability-focused decision-making in smart 
environments. 

Reliable and secure communication is also a 
critical design requirement to sustainable IoT 
systems besides energy efficiency. The research on 
cyber-forensics, trust management and anomaly 
detection [17–19] highlights the importance of 
preserving data integrity and data communication 
resilience in large-scale implementations. Regardless 
of the fact that these works are not explicitly directed 
at the optimization of energy, they strengthen the 
need to have a strong network functioning, which is 
one of the crucial factors in sustainability. 

Although such contributions have been made, 
there are still a number of gaps in research: 

The vast majority of clustering strategies are still 
based on heuristic/locally optimum selection of CHs, 
without global optimization tools or future sink 
locations, consideration. Mobile-sink strategies that 
exist scarcely manage sink mobility in relation to CH 
formation, and may frequently end up with sub 
optimum data forwarding routes, and a waste of 
energy. 

There is very limited research that looks at the 
WSN communication protocols through the explicit 
sustainability lens, including the environmental 
effect, maintenance rate, or sustainable energy 
equilibrium. 

The current IoT application- especially smart 
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cities- requires integrated frameworks, which 
integrate intelligent clustering, adaptive sink 
mobility, and multi-objective optimization. 

Such constraints underscore the significance of a 
sustainability-based clustering-mobility system that 
is coordinated. The given PSO-MSM protocol will 
deal with these gaps by combining multi-objective 
PSO-based CH-selection with an adaptative sink 

mobility approach that will allow energy-balanced 
and long-lasting WSN operation in the case of smart-
city and environmental IoT applications. In order to 
formulate the literature under review, Table 1 
classifies the key research directions, qualitative 
contributions, and fundamental limitations that 
guide the PSO-MSM approach development. 

Table 1: Summary of Related Work in Energy-Efficient WSNs. 
Category Representative Works Main Contributions / Limitations 

Classical clustering protocols LEACH [5], HEED [6], PEGASIS [7] 
Introduce clustering and CH rotation to reduce long 
transmissions. Suffer from random CH selection and 

early depletion near the sink. 

Enhanced CH selection Energy-aware routing [1], Vice-CH selection [11] 
Use residual energy and local metrics to improve 
stability and delay FND/HND. Limited by lack of 

global optimization. 

Mobile-sink approaches Circular, random, rendezvous mobility [12] 
Balance load and reduce hotspots, but do not 
coordinate sink movement with CH selection. 

Metaheuristic optimization PSO-based models [12,13] 
Multi-objective optimization for routing/clustering, 
but typically optimize either mobility or clustering, 

not both. 

Sustainability frameworks Green IoT [4], smart-city sustainability [15] 
Improve energy efficiency and reduce environmental 
impact. Few works embed sustainability directly in 

routing logic. 

Security and reliability Cyber-forensics, trust systems [17–19] 
Enhance data reliability and resilience but do not 

address energy-saving or clustering. 

3. PROPOSED SYSTEM 

The proposed PSO-MSM protocol is aimed to 
enhance the energy-efficiency and long-term 
sustainability of Wireless Sensor Networks (WSNs) 
by simultaneously optimizing the selection of 
cluster-heads (CHs) and mobile-sinks movement. 
The entire process of the protocol is depicted in 
Figure 1 (Flowchart of PSO-MSM), which 
demonstrates the integration of sink mobility, PSO 
optimization, clustering, and data transmission in 
each round. The detailed steps of the protocol are 
specified in Algorithm 1 (PSO-MSM Main Protocol), 
whereas the CH-selection procedure and sink 
mobility strategy are specified separately in 
Algorithm 2 (PSO-Based Cluster-Head Selection) and 
Algorithm 3 (Adaptive Sink Radius Selection). 

The network model assumes that N static sensor 
nodes are randomly deployed in a square field with 
the size of L × L. All nodes begin with the same initial 
energy E0 and communicate using the standard first-
order radio model. If a node sends a k-bit packet over 
distance d, the energy required would be as given in 
(1). 

The radio energy consumption follows the first-
order model 

 

In addition, the amount of energy needed to 
receive a k-bit-message is 

ERX(k) = kEelec, 

where k is the packet size in bits, d is the 
transmission distance, Eelec is the per-bit electronics 
energy, and ϵfs and ϵmp are the amplifier parameters 
for free-space and multipath models, respectively. 
The threshold distance d0 is given by d0 = √(ϵfs / 
ϵmp). These expressions give the importance of 
minimizing the long communication distance, 
especially between CHs and the sink. Because of this, 
the sink is free to move adaptively, following circular 
trajectories of different radii centered in the network. 
The radii used in the protocol include R1 = 0.25L, R2 
= 0.50L, and R3 = 0.75L. 

At the start of each round, the protocol computes 
the average residual energy in the inner, middle, and 
outer parts of the network. Based on this assessment, 
the sink decides a new movement radius according 
to the rule stated in Algorithm 3. It can move 
outwards when nodes in the inner region start to run 
out of energy, and inwards when nodes in the outer 
regions require closer access. The adaptive trajectory 
ensures that no particular region has a continuous 
communication load so that the energy around the 
sink does not get depleted too quickly. 

Once the position of the sink is updated, PSO is 
performed to obtain the optimum set of cluster 



207 
ENHANCING SUSTAINABILITY IN WIRELESS SENSOR NETWORKS THROUGH PSO-BASED 

CLUSTER OPTIMIZATION AND ADAPTIVE SINK MOBILITY 
 

SCIENTIFIC CULTURE, Vol. 12, No 1, (2026), pp. 203-215 

heads. The details of this optimization process are 
given in Algorithm 2, where each PSO particle 
represents one candidate CH set C = {c1, c2, …, cS}. 
The fitness of each candidate is analyzed in terms of 

three normalized objectives, i.e., the residual energy 
of selected CHs, the intra-cluster compactness, and 
the distance of each CH to the mobile sink. The 
objectives are: 

These are summed to the overall fitness function 

F = w1 f1 + w2 f2 + w3 f3 (w1 + w2 + w3 = 1). (4) 

Particles change their velocity and position 
according to normal PSO equations until the best 
solution is discovered. The resulting best 
configuration of particles from around the world is 
chosen as the CH configuration for the current round. 

After CH selection, nodes join the nearest CH, and 
a TDMA schedule is assigned by the CH. During the 
steady-state phase, each node sends sensing data to 
the CH, which aggregates the sensing data and sends 
the final packet to the mobile sink. Once all the 
transmissions are finished, each node updates its 
remaining energy according to the communication 
model, and dead nodes are flagged. The system then 
moves on to the next round and repeats the combined 
cycle of adaptive sink movement, PSO-driven CH 
selection, and energy-aware communication as in 
Figure 1. 

By coordinating the above procedures described 
in Algorithm 1, Algorithm 2, Algorithm 3, and Figure 
1, the PSO-MSM protocol realizes balanced energy 
consumption. Hotspot formation is mitigated, and 
the operational lifetime of WSNs is significantly 
extended. This makes PSO-MSM a good candidate 
for long-term IoT deployment in smart city, 
agricultural, industrial, and environmental 
applications where sustainability is key. 

3.1. Round-Based Protocol Operation 

The complete protocol operation is detailed in 
Algorithm 1, Algorithm 2, and Algorithm 3. Figure 1 
presents the detailed flowchart of the proposed PSO-
MSM protocol, illustrating the complete operational 
sequence of the system. The diagram begins with the 
initialization of network parameters, energy states, 
and PSO settings, followed by the round-based 
execution cycle. In each round, the sink checks how 
the remaining energy is distributed across the inner, 
middle, and outer parts of the network. It then 
chooses the best radius for its next movement and 
updates its position. After that, the PSO module 
creates several possible cluster-head sets and tests 
them. The particles update their positions step by 

step until the best CH set is found. 

 
Figure 1: Flowchart of the proposed PSO–MSM 

protocol. 

Once CHs are selected, nodes join their clusters, 
TDMA schedules are created, and data is sent from 
the nodes to the CHs, and then from the CHs to the 
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mobile sink. The process ends with an energy update 
and a check to see if the network should stop. This 
flow shows how sink movement and clustering work 
together to improve energy use in the WSN. 

4. RESULTS 

This section tests the performance of the proposed 
PSO-MSM protocol by using ns-3 simulation. PSO-

MSM is compared with three well-known 
hierarchical protocols for WSNs: LEACH, HEED, 
and PEGASIS. The main simulation parameters, 
including network size, initial node energy, radio 
model constants, packet size, sink mobility radii, and 
PSO parameters, are summarized in Table 2 
(Simulation Parameters). All protocols are simulated 
under the same conditions for the sake of fairness. 

Table 1: Algorithms. 

Algorithm 1 PSO–MSM Main Protocol. 

Input: Node positions, initial energy E0, PSO parameters, radii R1, R2, R3 
Initialization: 
Initialize residual energy Ei ← E0 for all nodes i 
Initialize sink position at center with radius R2 and angle θ0 
Partition the field into S logical sectors 
for each round r = 1 to Rmax do 
// Step 1: Sink Radius Selection 

Compute average residual energy in inner, middle, outer regions 
Rnext ← SELECTRADIUS(Einner, Emiddle, Eouter) 
Update sink radius to Rnext and angle θ ← θ + ∆θ 
Compute new sink coordinates (xsink, ysink) 
// Step 2: PSO-Based CH Selection 

Run Algorithm 2 with current sink position 
Obtain CH set C = {c1, . . . , cS} 
// Step 3: Cluster Formation 
for each node i do 
Find nearest CH cs ∈ C (minimum Euclidean distance) 
Assign node i to cluster of cs 
end for 
Each CH defines a TDMA schedule and broadcasts it to its members 
// Step 4: Steady-State Data Transmission 
for each cluster with CH cs do 
for each member node i in cluster of cs do 
Node i senses environment and prepares a k-bit data packet 
Node i transmits to cs (update Ei using (1)) 
CH cs receives packet (update Ecs using (2)) 
end for 
CH cs aggregates data (aggregation energy if applicable) 
CH cs transmits aggregated packet to sink 
Update Ecs using (1) with d = d(cs, sink) 
end for 
// Step 5: Energy Update and Termination Check 
Mark nodes with Ei ≤ 0 as dead 
if all nodes are dead or termination condition satisfied then 
break 
end if 
end for 

Algorithm 2 PSO-Based Cluster Head Selection 

Input: Node set N, sectors {1, . . . , S}, sink position 
Output: CH set C = {c1, . . . , cS} 
Initialize swarm of P particles 
for each particle p = 1 to P do 
Randomly select one candidate CH index per sector 
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Encode these indices into position vector xp 
Initialize velocity vp (e.g., zero or small random values) 
end for 
for each PSO iteration t = 1 to Tmax do 
for each particle p do 
Decode xp into candidate CH set Cp = {cp,1, . . . , cp,S} 
For each cp,s, compute: 
residual energy Eres(cp,s) 
average intra-cluster distance Dcluster(cp,s) (temporary partition) 
CH–sink distance Dsink(cp,s) 
Compute f1, f2, f3 and fitness Fp 
if Fp better than particle’s best Fbest then 
Update p’s personal best: pbest ← xp 
end if 
end for 
Identify global best particle g with highest Fg 
for each particle p do 
Update velocity: 
vp ← ωvp + c1r1(pbest − xp) + c2r2(gbest − xp) 
Update position: 
xp ← xp + vp 
Apply boundary and feasibility checks (valid CH indices per sector) 
end for 
end for 
Decode final global best gbest into CH set C 
return C 

Algorithm 3 Adaptive Sink Radius Selection 

Input: Residual energies of all nodes, radii R1, R2, R3 
Output: Selected radius Rnext 
Initialize sums: Einner ← 0, Emiddle ← 0, Eouter ← 0 
Initialize counters: Ninner ← 0, Nmiddle ← 0, Nouter ← 0 
for each node i do 
Compute distance di from network center 
if di < R1 then 
Einner ← Einner + Ei, Ninner ← Ninner + 1 
else if R1 ≤ di < R2 then 
Emiddle ← Emiddle + Ei, Nmiddle ← Nmiddle + 1 
else 
Eouter ← Eouter + Ei, Nouter ← Nouter + 1 
end if 
end for 
if Ninner > 0 then 
Einner ← Einner / Ninner 
end if 
if Nmiddle > 0 then 
Emiddle ← Emiddle / Nmiddle 
end if 
if Nouter > 0 then 
Eouter ← Eouter / Nouter 
end if 
// Simple balancing rule (can be refined) 
if Einner < Emiddle and Einner < Eouter then 
Rnext ← R2 or R3 ▷ Move outward to relieve inner region 
else if Eouter < Emiddle and Eouter < Einner then 
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Rnext ← R1 or R2 ▷ Move inward to serve outer nodes 
else 
Rnext ← R2 ▷ Default to middle radius 
end if 
return Rnext 

4.1. Simulation Setup 

The simulation was carried out using ns-3. Table 2 
lists the main simulation parameters used in our 
experiments. 
The six key performance indicators employed to 
make the comparison are 

 FND (first-node-dead), HND (half-nodes-
dead), and LND (last-node-dead) times 

 Total residual energy 

 Packet delivery ratio (PDR) 

 End-to-end delay 

 Channel busy ratio (CBR) 

 Energy imbalance between nodes 
The development of these metrics is shown in 
Figures 2–7, and the trends are covered in detail 
below. 

Table 2: Simulation Parameters. 
Parameter Value 

Simulation area 100 × 100 m2 

Number of sensor nodes 100 

Initial energy per node 2 J 

Packet size 4000 bits 

Electronics energy (Eelec) 50 nJ/bit 

Free-space amplifier (ϵf s) 10 pJ/bit/m2 

Multipath amplifier (ϵmp) 0.0013 pJ/bit/m4 

Data aggregation energy 5 nJ/bit 

Sink mobility radii {25, 50, 75} m 

PSO population size 30 particles 

PSO max iterations 50 

Inertia weight ω 0.7 

Acceleration coefficients (c1, c2) 1.5, 1.5 

4.2. Network Lifetime Analysis 

The evolution of the number of alive nodes along 
the rounds in the simulation is presented in Figure 2 
(Network lifetime comparison). PSO-MSM obviously 
keeps more active nodes for a longer period as 
compared to LEACH, HEED, and PEGASIS. 

 
Figure 2: Network Lifetime Comparison: Number of 
Alive Nodes vs. Simulation Rounds for PSO–MSM, 

LEACH, HEED, and PEGASIS. 

Quantitatively, the FND event for the PSO-MSM 
appears at about 850 rounds, while LEACH, HEED, 
and PEGASIS exhibit FND at nearly 460, 520, and 700 
rounds, respectively (refer to Figure 2). This means 
that PSO-MSM delays FND by around 85% 
compared to LEACH, 63% compared to HEED, and 
more than 20% than PEGASIS. 

Similarly, the HND point is pushed further in time 
with PSO-MSM, with a reported improvement of 
more than 42% over the benchmark protocols. 
Finally, the LND time for PSO-MSM is greater than 
1900 rounds, which is about 31–46% more than 
LEACH, HEED, and PEGASIS (Figure 2). 

These lifetime gains have direct links with the 
coordinated design of PSO-MSM. The multi-
objective PSO-based CH selection strategy limits the 
long-distance transmissions and suppresses the 
overloading of specific nodes, while the adaptive 
circular sink mobility is helpful in sharing the 
forwarding load between the inner, middle, and 
outer regions. Together, these mechanisms avoid the 
premature demise near the sink and prolong the 
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lifetime of the whole network. 

4.3. Residual Energy Evolution 

The total residual energy of the network as a 
function of rounds of the simulation is given in 
Figure 3 (Total residual energy vs. rounds). For all 
protocols, the residual energy goes down with time 
as nodes take part in sensing and communication. 
However, PSO-MSM always preserves the maximum 
residual energy at any round. 

Compared with LEACH, HEED, and PEGASIS, 
PSO-MSM has about 27–35% less overall energy 
consumption during the whole simulation period 
(Figure 3). The energy curve of PSO-MSM is also 
more smoothly decaying, without sharp drops 
indicating the rapid depletion of hotspots around the 
sink typically. 

This behaviour confirms the success of the PSO 
fitness function, which is a combination of residual 
energy, intra-cluster compactness, and CH–sink 
proximity, for encouraging CH configurations that 
use unnecessary energy less. At the same time, the 
adaptive sink movement decreases the number of 
repeated long-hop transmissions originating from 
the same region, which is another factor in 
maximizing sustainable energy consumption. 

 
Figure 3. Total Residual Energy across Simulation 

Rounds for All Protocols. 

4.4. Packet Delivery Ratio (PDR) 

The packet delivery ratio (PDR) with different 
traffic conditions is given in Figure 4 (PDR 
comparison). PDR is the measure of the fraction of 
generated packets that successfully reach the sink 
and is an important measure of reliability in IoT and 
smart city-based applications. 

As shown in Figure 4, PSO-MSM is able to 
maintain a stable PDR of about 0.93, which is 
significantly higher than the competing protocols. 
LEACH gets a PDR of around 0.78, HEED around 
0.82, and PEGASIS about 0.87. Thus, PSO-MSM 

enhances PDR by about 6 percentage points 
compared to PEGASIS and by about over 10–15 
percentage points compared to LEACH and HEED. 

This improvement can be attributed to two main 
things. First, optimized CH location means that 
member nodes communicate at lesser distances and 
with fewer retransmissions. Second, the adaptive 
trajectory of a sink helps to reduce congestion in 
congested regions and keep CH–sink distances 
reasonable, which leads to less packet loss caused by 
collisions and buffer overflows. For smart-city 
monitoring in which the data stream is required to be 
continuous and accurate, this higher PDR translates 
directly into better service quality. 

 
Figure 4: Packet Delivery Ratio Comparison among 

the Evaluated Protocols. 

4.5. End-to-End Delay 

The end-to-end delay results obtained for the four 
protocols are shown in Figure 5 (End-to-end delay 
comparison). Delay here refers to the average delay 
in the data generated at a sensor node to reach the 
sink. 

PSO-MSM always shows the smallest end-to-end 
time for all the evaluated scenarios (Figure 5). 
LEACH and HEED, although having the advantage 
of clustering, may have the drawback of less optimal 
CH placements and overload of CHs, resulting in 
increased queueing and transmission delays. 
PEGASIS, in its chain-based structure, has many long 
paths and sequential forwarding, which may further 
increase the latency. 

In contrast, PSO-MSM creates compact clusters 
with small distance within clusters and maintains 
moderate distance from CH–sink with the help of 
adaptive mobility. This makes the number of long 
hops smaller and relieves the bottlenecks of the 
nodes that are near the static sink. For delay-sensitive 
applications, such as early warning systems, 
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industrial control, or traffic safety notifications, such 
lower delay values are especially advantageous. 

 
Figure 5: End-to-end Delay Performance 

Comparison. 

Channel Busy Ratio (CBR) The channel busy 
ratio (CBR) of each protocol is given in Figure 6 (CBR 
comparison). CBR is the percentage of time for which 
the wireless channel is sensed to be busy and is 
directly proportional to contention, collisions, and 
retransmissions. 

PSO-MSM shows the lowest CBR value among all 
the protocols (Figure 6). LEACH and HEED may 
have higher contentions near CHs and the static sink 
on account of unbalanced traffic, whereas PEGASIS 
can stack bursts of transmissions along its chain, 
making it more probable that they experience busy 
periods. 

In PSO-MSM, a number of design choices help 
to keep CBR low 

 Clusters are concentrated and more evenly 
balanced, so that no one CH becomes a 
constant hot spot 

 The mobile sink moves its position so as to ease 
congested areas 

 The TDMA schedules within clusters reduce 
the simultaneous transmissions 

A lower CBR means a lower number of collisions, 
retransmissions, and idle-listening energy, which 
contributes not only to increased efficiency, but also 
to improved scalability. 

4.6. Energy Imbalance 

Energy imbalance in the network is measured in 
terms of the standard deviation of the node residual 
energies over time. The resulting curves can be seen 
in Figure 7 (Energy imbalance vs. rounds). Lower 
values indicate that energy is being consumed more 
homogeneously across nodes, which is desirable in 
order to maintain the coverage and connectivity. 

As shown in Figure 7, PSO-MSM has the lowest 
energy imbalance over the whole simulation and 
about 25–45% less as compared with LEACH, HEED, 
and PEGASIS. The competing protocols have high 
and varying imbalance values, indicating the 
existence of hotspots around the sink or along certain 
paths. 

The decrease in imbalance for PSO-MSM is a 
direct result of combining multi-objective CH 
selection with explicit consideration of residual 
energy with an adaptive sink mobility scheme, which 
is in response to energy distribution in inner, middle, 
and outer regions. This synergy guarantees that no 
subset of nodes is consistently overloaded, in turn 
delaying the formation of holes in the coverage and 
supporting long-lived, sustainable operation. 

 
Figure 6: Channel Busy Ratio (CBR) for Each 

Protocol under Varying Load. 

 
Figure 7: Energy Imbalance across Simulation 

Rounds. Lower is Better. 

4.7. Overall Discussion 

Put together, the results in Figures 2–7 
demonstrate that PSO-MSM is consistent with major 
improvements over LEACH, HEED and PEGASIS in 
all key metrics. It delays FND, HND, LND; maintains 
a higher residual energy; PDR; reduces the delay; 
CBR; and maintains a more balanced energy 
distribution. 

From the point of view of sustainability, these 



213 
ENHANCING SUSTAINABILITY IN WIRELESS SENSOR NETWORKS THROUGH PSO-BASED 

CLUSTER OPTIMIZATION AND ADAPTIVE SINK MOBILITY 
 

SCIENTIFIC CULTURE, Vol. 12, No 1, (2026), pp. 203-215 

improvements imply that PSO-MSM can maintain 
the operation of WSNs over longer periods of time 
with reduced number of maintenance interventions, 
lower number of battery replacements and more 
stable coverage. This is in direct correspondence to 
the requirements for smart city, environmental 
monitoring, and industrial IoT applications which 
require long-term, autonomous and energy-aware 
operation. A more detailed discussion of these 
implications for sustainability is given in the separate 
Sustainability Impact section of the manuscript. 

5. SUSTAINABILITY IMPACT 

The exploding Internet of Things (IoT) 
infrastructures in smart cities, agriculture, 
environmental monitoring, and industrial 
automation have brought a further heightened need 
for Wireless Sensor Networks (WSNs) that can run 
reliably over long periods without little human 
intervention. Because sensor nodes are usually 
battery operated and deployed in large numbers in 
locations where the maintenance of these nodes is 
costly or of little practical use, the sustainability of the 
operation of these sensor nodes is a critical design 
requirement. The proposed PSO-MSM protocol 
directly contributes to this need by making the 
network more energy efficient, prolonging the 
network lifetime, and reducing the operational 
overhead by the use of coordinated clustering and 
adaptive sink mobility. 

From an environmental point of view, PSO-MSM 
lowers the number of energy hotspots by more 
evenly distributing the communication tasks within 
the network. As shown in the evaluation the protocol 
delays significantly the first-node-dead (FND), half-
nodes-dead (HND) and last-node-dead (LND) points 
resulting in longer overall network operation. This 
extension reduces the number of battery 
replacements and redeployments of nodes which are 
major contributors to electronic waste. By reducing 
the energy-hole issue, the protocol also aids in 
preserving sensing coverage for all areas of the 
monitored field, which aids in long-term 
environmental observation, such as air quality 
observation, forest and wildlife observation, and 
water resource management. 

From a purely economic perspective, a long 
operational life of the network can be directly 
converted into lower maintenance costs. 
Applications such as structural health monitoring, 
traffic analysis, precision agriculture and industrial 
IoT systems need continuous data gathering and 
usually cover large deployment areas. Replacing 
batteries or reinstalling nodes can be labor intensive 

and expensive, especially when deployments are 
remote or distributed over large urban 
environments. By conserving energy and balancing 
workload, PSO-MSM makes a significant difference 
in the number of visits by technicians and 
maintenance cycles throughout the operational life of 
the network. In mass deployment efforts, even small 
increases in lifetime result in major cost savings. 

The protocol also supports social sustainability by 
ensuring better reliability and timeliness of data 
delivery two factors necessary for systems that 
impact the direct safety of the public. For example, 
emergency response systems, flood and wildfire 
detection networks and public health monitoring 
platform require consistent delay-sensitive data. 
PSO-MSM has the advantages to improve packet 
delivery ratio (PDR), reduce end-to-end delay, and 
keep the channel congestion lower, which will 
guarantee that the information of decision makers 
and emergency systems can be delivered without 
unnecessary delay and data loss. This increased 
reliability improves community resilience, 
contributes to early-warning mechanisms and 
supports the development of safer and more 
responsive urban areas. 

Overall, the sustainability benefits of PSO-MSM 
are not limited only to energy savings. By 
minimizing electronic waste, cutting operational 
costs, and reinforcing the reliability of long-term 
monitoring infrastructures, the protocol adheres to 
the environmental, economic, and social pillars of 
sustainable IoT design. These advantages make PSO-
MSM a good candidate for next-generation smart city 
and environment monitoring systems that require 
durable, scalable and energy aware wireless sensing 
solutions. 

6. CONCLUSION 

This paper proposed PSO-MSM, a mobile sink 
enabled clustering protocol for the energy 
sustainability of the Wireless Sensor Networks 
(WSNs). The proposed method combines multi-
objective Particle Swarm Optimization (PSO) 
algorithm for CHs selection with sink mobility 
strategy of sink adjusting its trajectory depending on 
residual energy distribution in the area. By 
coordinating CH selection with planned sink 
movement, the protocol reduces on long distance 
transmissions, reduces the energy-hole issue and 
contributes to ensure a more even sharing of 
communication loads throughout the network. 
Results obtained from extensive ns-3 simulations 
show that PSO-MSM provides measurable 
improvements as compared to benchmark protocols 
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like LEACH, HEED and PEGASIS. The protocol 
greatly increases the time before the first, half and 
last nodes die - by up to 46% - and keeps the residual 
energy higher in each round of the simulation. It also 
gives a higher packet delivery ratio, less end-to-end 
delay and less channel busy ratio, which means more 
efficient use of network resources and more reliable 
data transmission. These performance improvements 
as a whole underline the capacity of PSO-MSM to 
facilitate sustained long-term operation in a 
maintenance-efficient manner in large scale IoT-
based deployments. 

In addition to performance, the sustainability 
analysis demonstrated that PSO-MSM contributes to 
environmental, economic, and social sustainability. 
By prolonging the life of the network and minimizing 
depletion of hotspots, the protocol contributes to the 
minimization of battery waste and decreases the 

frequency of expensive maintenance operations. Its 
enhanced reliability and responsiveness also lend 
themselves to public safety and environmental 
monitoring applications that require continuous, 
high quality data. 

Future work will examine a number of extensions 
to further improve PSO-MSM. First, the combination 
of machine learning approaches for predictive sink 
dynamics (mobility) may help better adapt to 
dynamic network conditions. Second, testing the 
protocol in heterogeneous IoT environments (where 
nodes can have different sensing, computation and 
energy capacity) will help test wider applicability. 
Finally, an implementation of PSO-MSM on physical 
sensor testbeds will enable to validate the approach 
under real-world conditions in terms of practical 
energy models, interference conditions and mobility 
constraints. 
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