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ABSTRACT 

Ageing Heating, Ventilation, and Air Conditioning (HVAC) fluid pipeline systems pose significant operational 
and economic challenges due to degradation, energy inefficiency, and high retrofit costs. This study aims to 
develop a simulation-driven, machine learning-based framework to accurately predict retrofit costs and 
support cost-effective decision-making for ageing pipeline networks. A quantitative research methodology was 
adopted, where synthetic data were generated via stochastic simulation using Monte Carlo techniques in 
Python (NumPy and Pandas). Three supervised machine learning models, Random Forest, eXtreme Gradient 
Boosting (XGBoost), and Artificial Neural Network (ANN), were implemented and evaluated using RMSE, R², 
and MAPE as performance metrics. The results showed that XGBoost achieved the best performance with an 
RMSE of 221.19, R² of 0.929, and MAPE of 5.90%, followed closely by Random Forest, while ANN 
underperformed with an RMSE of 335.03. XGBoost and Random Forest are closely aligned with actual retrofit 
costs, indicating strong predictive accuracy. The study concludes that ensemble models trained on simulation-
derived data offer a robust solution for proactive retrofit planning. The findings have significant implications 
for enhancing infrastructure resilience and optimising maintenance investment. However, the study is limited 
by the use of synthetic data and recommends future work with real-world datasets and expanded modelling 
techniques for multi-objective predictions. 
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1. INTRODUCTION 

Managing and improving infrastructure for 
energy efficiency is challenging because of the issues 
with ageing HVAC pipelines. With ageing pipelines, 
their efficiency drops, resulting in increased costs, 
decreased energy use and higher risks for failure. 
With fluid pipeline networks receiving greater use in 
city infrastructure, it is crucial to retrofit them 
efficiently. The study proposes using a simulation 
model with machine learning to help make the best 
decisions on retrofitting, supported by predictive 
analytics. 

HVAC (Heating, Ventilation and Air 
Conditioning) pipelines are the major points to 
consider providing the indoor quality of the 
environment and sustaining levels of energy 
efficiency through conducted chilled or heated water. 
The systems are based on a closed-loop piping and 
pumping circulation and heat exchangers to circulate 
thermal loads. The efficiency of HVAC pipelines 
deteriorates over time as the pipelines become 
clogged with internal corrosion, fouling, fatigue at 
joints, and sedimentation, which could slow down 
flow and adversely affect the thermal transfer 
performance of the pipelines (Liu et al., 2024). This 
causes more energy consumption, an imbalance in 
temperature regulations, and an increase in working 
expenses. To prevent such burdens and risks, the 
replacement or inefficiency of a piping system as old 
as HVAC is a significant problem both in the modern 
urban infrastructure, where energy efficiency is both 
an environmental and economic necessity.  

Recent findings have suggested digital twins and 
the use of sensors in diagnosis, which in many cases 
involve large-scale data in real-time, which is not 
always available or arrives at a manageable cost 
(Shaheen et al., 2024). Hybrid methods using a 
combination of simulation and predictive modelling, 
as well as machine learning, have also displayed 
potential in more recent times. As an example, Taheri 
et al. (2021) used the deep learning model to predict 
the pressure drops in the HVAC systems, whereas 
Khosravian (2025) studied the ML and CFD-based 
models to estimate thermal efficiency in pipelines. 
Only a few studies, however, are available 
concerning merging simulation-based synthetic data 
and supervised ML algorithms specifically designed 
to work with cost-oriented retrofit planning. This 
paper fills that gap by proposing a framework which 
makes use of simulated performance degradation 
scenarios and machine learning in order to promote 
sound decision-making. 

Significant infrastructure systems such as 
buildings, factories and district heating networks 

depend mainly on fluid pipelines in HVAC systems. 
Over the years, pipelines may wear and perform 
worse due to corrosion, scaling, thermal fatigue and 
similar causes (Behrooz, 2016). Improving pipeline 
networks through retrofitting is seen as a good way 
to restore their performance. Nevertheless, since 
retrofitting a building is both costly and complex, 
planning for it must use reliable data and be 
financially justified. Advancements in simulation 
and ML provide useful tools for planning 
infrastructure using data. With network simulations, 
planners can observe changes in fluid dynamics and 
practice retrofits with virtual tests (Park et al., 2023). 
Pairing simulated data with ML technology allows 
for building models that estimate the rate of decline, 
related costs and efficiency after various retrofit 
options are considered (Alrabghi & Tiwari, 2015).  

Improper HVAC pipeline retrofitting may also 
increase its operation costs by 25% a year, as 
retrofitting poorly designed pipelines may struggle 
to handle the flow and cause pressure losses, 
resulting in a wastage of energy, along with capital 
expenses since retrofit investment is mismanaged 
(Behrooz & Boozarjomehry, 2017). This necessitates 
the absolute presence of well-based planning tools 
that could be guided by data. 

1.1. Problem Statement and Literature Gap 

The majority of models used for retrofitting fluid 
pipelines in civil and mechanical systems are still 
based on traditional and manual techniques (Lee et 
al., 2020). They often neglect the uncertain variations 
in pipeline performance and leave out uncertainties 
in economic aspects. Furthermore, some researchers 
argue that while simulation tools are popular in 
design and fault forecasting, incorporating their data 
with advanced supervised ML models for retrofit 
planning is still rare (Sani et al., 2025). Evaluating 
various machine learning models by using standard 
metrics is not commonly included in current 
literature, although this is necessary for judging 
which models are suitable and appropriate to use 
(Chen & Guestrin, 2016). Few studies have tackled 
using simulation-based datasets together with 
interpretable and scalable AI models for the 
maintenance of ageing HVAC systems (David, 2024; 
Kliangkhlao et al., 2024; Nashruddin et al., 2025). 
Therefore, the study introduces a reliable ML 
approach supported by simulations to assist 
decision-makers in identifying the most cost-saving 
retrofit strategies when there is uncertainty. 

1.2. Aims and Objectives 

This research aims to create a model that uses 
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simulations and machine learning to optimise cost-
effective planning for the modification of older fluid 
pipeline networks. The specific research objectives 
are 

To simulate the performance degradation and 
retrofit scenarios of ageing fluid pipeline networks 
under varying operational and environmental 
conditions, and generate a comprehensive dataset for 
predictive modelling. 

To implement and compare advanced supervised 
machine learning models for predicting retrofit costs 
and performance outcomes, and evaluate their 
effectiveness. 

1.3. Significance of the Study 

The study introduces a data-focused technique for 
retrofitting infrastructure that can benefit the 
industry. It brings together simulation modelling and 
machine learning to support decision-making by 
providing approaches for decision-makers on where 
to invest their resources. This study makes use of 
Google Colab, a remote cloud service, to ensure 
others can access and reproduce the methodology 
and use it in other types of pipeline networks aside 
from HVAC. Moreover, stochastic programming 
tools, after their use, enable the planners to consider 
risky elements, which create more solid decisions 
concerning infrastructure development. 

2. LITERATURE REVIEW 

The recent trend toward modernisation of ageing 
fluid pipeline networks, especially HVAC networks, 
has led to much investigation into innovative 
predictive and optimisation approaches. The 
infrastructure of fluid pipeline systems and HVAC 
networks is becoming outdated; scientists are paying 
more attention to the use of more sophisticated tools 
that would predict and enhance their effectiveness. 
One can now use modelling and ML to determine 
wear in the pipelines and chart appropriate retrofits 
that are not too expensive. In the current literature 
review, prior work that entails the simulation in data 
generation together with the application of ML in 
predicting the performance in the fluid infrastructure 
has been reviewed and evaluated in terms of their 
usefulness in retrofit projects. The review below thus 
discusses the research objectives for the simulation of 
aged pipelines, the application of machine learning 
techniques and the guidelines pertaining to the same. 

2.1. Simulation of Ageing Fluid Pipeline 
Networks for Data Generation 

The aged or updated networks that are speculated 
in fluid pipelines need to be simulated to get 

knowledge about the dynamics of the system and to 
generate data-driven models. When using the model 
examples, engineers may trust that the flow may be 
modelled with EPANET or OpenFOAM and the 
pressures distributed and losses of water energy 
measured in water systems (Arandia & Eck, 2018; 
Rettenmaier et al., 2019). They can also assist in 
duplicating the destruction that would be caused on 
the pipelines by scaling, corrosion or high 
temperatures. In their analysis, Kazi et al. (2024) 
stochastically modelled gas pipelines because the 
demand in the gas market is uncertain. The paper 
demonstrated that the probabilistic simulations can 
be useful, and they can indicate the alteration and 
uncertainty in the pipeline actions as experienced in 
the upgrade of the system. Moreover, Vilarinho et al. 
(2017) relied on simulation and used the results as a 
training set for ML models to optimise pipeline 
maintenance with dependability standards. 

Park et al. (2023) examined the use of digital twin 
technology for the HVAC industry by processing 
data from sensors and combining it with simulations 
to keep a watch on system performance. The use of 
this approach suggests that the study can join 
degradation simulation data with other, real or 
synthetic, data to accurately represent training data. 
Even though advanced tools are available, a lot of the 
current research uses models that do not represent all 
the changes and uncertainty found in actual 
pipelines. There are still a few methods that rely on 
simulations to provide organized and labelled data 
used for developing further machine learning 
techniques. This study used current simulation 
programs to produce data that displays various 
ageing and retrofitting scenarios and helps train and 
validate predictive models under good conditions. 

2.2. Application of Machine Learning Models 
for Predictive Retrofit Planning 

Civil infrastructure uses widely supervised 
machine learning models for tasks like predicting 
faults, planning maintenance and estimating existing 
risks. Random Forest (RF), Extreme Gradient 
Boosting (XGBoost) and Artificial Neural Networks 
(ANNs) are well-known as they perform well, handle 
nonlinear relationships and can work with large 
datasets. In the context of predictive maintenance, 
Random Forest can be used because it deals well with 
a lot of data and complicated relationships between 
the variables (Tang et al., 2018). RF has also been used 
by engineers in pipeline systems to predict leaks in 
pipes and to gauge the remaining life span of the 
installed facilities, and to predict flow losses. They 
introduce models that can be interpreted using RF 
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that are not sensitive to much variance (Sani et al., 
2025). It was observed that XGBoost was more 
efficient than other algorithms in managing both 
regression and classification problems because of 
being able to efficiently manage missing values and 
utilising only a few traits (Biau et al., 2019).  

According to Heymann and Schmitt (2023), the 
XGBoost was efficient in ranking the important 
degradation factors with respect to their feature 
importance to monitor the health of pipelines. A 
collection of Artificial Neural Networks has received 
high interest due to their ability to exhibit nonlinear 
relationships. Malek Mohammadi et al. (2019) noted 
that ANNs work well in both spatial and 
longitudinal predictions of infrastructure 
degradation if they are exposed to abundant training 
data. Simultaneously, they noted that this method is 
not always interpretable, which makes it difficult 
when the engineer would desire to explain decisions 
unambiguously. 

Random Forest, XGBoost and ANN were chosen 
on the basis of the fact that they have achieved good 
results on structured tabular data. Ensembles, such 
as RF and XGBoost, are especially suitable in cases of 
nonlinearity, multicollinearity, and variable 
interactions, as well as low preprocessing versus 
models, such as Support Vector Machines (SVM). 
SVM and linear regressions were taken into account, 
but could not generalise well in non-linear form or 
high-dimensional artificial data that negatively 
affected their usability. ANN was also added to see 
how it performs on the deeper, non-linear 
interactions; however, interpretability and 
overfitting were a concern. 

Most of the time, testing these models involves 
using both error-based and correlation-based 
metrics. To measure prediction errors, RMSE and 
MAPE are preferred, and the coefficient of 
determination (R²) rates how much a model explains 
the variance in the output. The authors indicate that 
it is especially important to use these metrics for 
benchmarking models before using them to decide 
on infrastructure projects. 

While lots of research work on ML for pipeline 
diagnostics exists, not many have compared various 
ML models using identical datasets computed with 
simulators. It is also true that most methods do not 
take uncertainty into account, even though this is 
essential for planning future building upgrades. By 
training and comparing RF, XGBoost and ANN 
models on data created by a simulation, this research 
uses RMSE, R² and MAPE to find the most reliable 
predictors for how much retrofit would cost and how 
it would perform. 

3. THEORETICAL FRAMEWORK 

The methodology is based on Stochastic Decision 
Theory and promotes decisions to be made under the 
probability and optimisation (Bertsekas, 2019). Such 
a theory can be used to formally assess potential 
retrofits by checking the most probable scenarios and 
the effects of the changes in usage, weather and 
damage to materials. The study executes the 
stochastic theory of the decision framework using 
simulation data on various situations of the pipeline 
network and learning the same. Such an approach 
not only assists planners to choose optimal retrofit 
strategies most of the time it also provides 
knowledge of the risk and the scope of options that 
can be expected. The focus on expected value and 
minimising errors in decision optimisation is 
supported by using model evaluation metrics. 

The use of the stochastic decision theory is shown 
in the fact that uncertainty was added through Monte 
Carlo simulations in various pipeline degradation 
scenarios. It was then learned that the retrofit costs 
have an expected value through the ML models that 
are used in the supervised learning and are 
approximations of the value function in the 
stochastic decision theory. Although not 
encountered as a reinforcement learning problem, 
the predictive model presents a substitute that can be 
used to make decisions about retrofit strategies in the 
face of uncertainty. 

Although the concept of stochastic programming 
is applied in this paper, it did not employ a formal 
structured description as it contains decision 
variables, objective functions, and constraints. The 
structure, however, can be augmented as a two-stage 
stochastic program in which the decision on 
strategies on retrofits is to be made in the first stage, 
and the second stage models retrofit cost as a random 
variable depending on the scenarios of pipeline 
condition. Subsequent efforts can refine this structure 
into one in which optimization is embedded as part 
of the planning. 

3.1. Literature Gap 

Although simulation and machine learning have 
long been used in the industry, most studies focus on 
them independently. Simulations help with testing 
systems under stress, whereas ML models are 
created using past data or data collected from 
sensors. This study combines generating data 
through simulation and advanced learning models to 
help guide the retrofitting of old HVAC pipelines. 
There is not enough literature covering the 
importance of models that are both accurate and can 
be easily explained in infrastructure planning. Even 
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though such models as RF, XGBoost and ANN have 
always been tested in different infrastructure 
domains individually, only a few studies compare 
these models using consistent data and a single way 
of measuring the results. This study helps by 
measuring the models and seeing which ones are 
more appropriate for designing retrofits. Another 
critical issue is related to measuring how uncertain 
the results are. This study applies stochastic models 
to both data collection and analysis to reflect the real-
life challenges faced by infrastructure. Embedding 
these chance elements in simulation-ML frameworks 
allows this study to present a novel and efficient way 
to plan updates for old fluid networks. 

4. RESEARCH METHODOLOGY 

This section includes the process and 
methodology behind the creation of a simulation and 
machine learning framework for low-cost updating 
of aged fluid pipelines, particularly in HVAC 
systems. The approach is made to handle uncertainty 
that often affects pipes while making predictive 
models for assessing retrofitting. The quantitative 
approach leads the research to use simulation to 
create the data, machine learning for making 
predictions and performance measures to assess each 
model. Pretty much everything, including data 
processing, building models and visualising the 
results, is done using Python with Google Colab. 

4.1. Research Method and Design 

It uses various computational approaches and 
predictive methods in its research. Through 
simulation and the use of supervised machine 

learning, the design can predict both the cost and the 
performance of retrofits on ageing fluid pipelines. 
Simulation helps to prepare data that models can 
learn from, which is based on actual physics 
occurring in different situations (Alrabghi & Tiwari, 
2015; Park et al., 2023). The use of numbers in the 
field makes it possible to measure objectively, 
analyse statistics and apply findings to a wide range 
of examples. The approach relies on stochastic 
modelling, as it deals with the fact that pipe ageing 
and related problems are mostly random and 
unpredictable. According to decision theory, actions 
for retrofitting systems are planned by looking at 
expected results that might change as conditions 
change (Busoniu et al., 2017).  

The approach is based on the main principles of 
operational research (OR), especially the application 
of stochastic modelling as a means of making 
decisions in uncertain situations and optimisation of 
the distribution of resources. Simulation applied in 
the generation of a scenario is in line with other 
general methods on discrete-event models prevalent 
in OR. In addition, the models applied as machine 
learning fit into a bigger decision-support system 
based on prediction, which is within the tradition of 
the OR to merge analytical models and 
computational intelligence to solve strategic 
problems related to infrastructure investment. The 
approach involving the combination of simulation, 
uncertainty modelling, and predictive analytics 
reflects the current OR models of asset management 
and optimising maintenance. 

The study’s structure follows a sequence in Figure 
1: 

 
Figure 1: Study Framework. 

4.2. Data Collection Techniques 

In this study, stochasticity in a simulation model 
was achieved through Monte Carlo simulation of 
various degradation trends of HVAC pipelines in 
changing circumstances. Randomness was included 
in input values of the simulations on simulated age 
progression of the pipes, material degradation 
coefficient (they were sampled through a uniform 
sampling distribution) and changing operational 
parameters such as flow and external temperature. 
This enabled it to be able to create different scenarios 
that depict the uncertainty in the real world about 

pipeline performance. The stochastic framework 
made the resulting dataset more heterogeneous, 
including the variability not only in the sense of static 
inputs but also in the patterns in the degradation of 
the performance over time. This is a method of 
probabilistic training that enhances training machine 
learning models to generalise within a variety of 
possible future retrofit scenarios. 

The data for this study were obtained through 
simulation modelling of pipelines affected by ageing. 
The simulations reflect how pipelines deteriorate 
over time due to different flow rates, temperatures, 
pressure drops and changes in materials (Bayani & 
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Manshadi, 2022). Every simulation scenario reflects a 
distinct arrangement, upgrading state or likelihood 
of failure. Main output variables are the pressure 
drop, the flow decrease, energy losses and the 
expected expenses for upgrading. For supervised 
learning models, the variables in the dataset are 
assigned as dependent variables (Hyndman & 
Koehler, 2006). This simulation model considers the 
pipeline diameter, its total length, its age, the 
material it is made of and the rate of flow inside it 
and the impact of different environmental factors on 
its performance (Malek Mohammadi et al., 2019). 
Using Monte Carlo techniques in simulations allows 
for including different cases of degradation within 
the dataset (Li & Guan, 2016). The acquired data is 
managed and prepared through Pandas and NumPy 
in Python. It is necessary to scale, encode (for 
categorical data) and find outliers to get the model 
ready for processing. After preparation, the final data 
is divided into an 80:20 training and testing split. 

The simulations were done using Python 3.10, and 
stochastic sampling was done through NumPy, and 
data structuring through Pandas. Although physical 
CFD models, such as OpenFOAM, were not used, the 
process of simulation implemented degradation 
logic in terms of parameterised equations that 
approximated real-world hydraulic losses. Every 

simulated scenario was considered a different Monte 
Carlo iteration, and between 5,000 simulations were 
performed to provide statistical convergence. 
Boundary conditions enclosed the length of the pipes 
between 50-500 meters, diameter between 0.05-0.3 
meters and a temperature that varied between -10 °C 
to 45 °C. Convergence was confirmed by tracking the 
stability of the distribution of output (e.g., average 
cost retrofit) of further iterations of the batch. There 
were no mesh sizes needed since the study and 
synthetic data generation were using instead of 
meshed geometries. Nevertheless, realism of 
simulations was also tested by comparing the sample 
outputs with reference to empirical degradation 
profiles reported in the literature (Bayani & 
Manshadi, 2022). 

4.3. Data Analysis Method 

Data scientists in Python use the following three 
machine learning models: Random Forest (RF), 
Extreme Gradient Boosting (XGBoost) and Artificial 
Neural Networks (ANN). Using the dataset made 
from the simulations, the model was trained to 
estimate the cost of retrofitting and calculate energy 
savings and lower pressure loss. The following figure 
2 indicates the analysis flowchart used in this study. 

 
Figure 2: Analysis Flowchart (AI/ML-Integrated Predictive Modelling Framework). 

Three metrics are used to evaluate the models: 
RMSE, R² and MAPE. 

4.3.1. Random Forest Regression 

Random Forest uses multiple decision trees to 
train its model and predicts by averaging the output 
of the trees (Breiman, 2001). Its prediction for a given 
input x is (in equation 1): 

𝑦̂ =  
1

𝑇
∑ 𝑓𝑡(𝑥)𝑇

𝑡=1 ---- (1) 

Where f_t (x)the prediction of the t-th tree and T 
is is the total number of trees. 

4.3.2. XGBoost 

XGBoost produces regression trees step by step 
and applies a regularisation to generalise the trees. 
The model minimises the following objective 
(equation 2): 

L = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1 -------(2) 
Here l is the loss function (e.g., squared error), 

Ω(f_k )  =γT+1/2λ∥w∥2 is the regularisation term for 
each tree fk, with T as the number of leaves and w the 
weights (Chen & Guestrin, 2016). 

4.3.3. Artificial Neural Network (ANN) 

An ANN includes input, hidden and output 
layers and uses nonlinear activities (such as ReLU). 
The output y ̂ for input x is calculated as (equation 3): 

𝑦̂ =  𝜎(𝑊2. 𝜎(𝑊1. 𝑥 + 𝑏1) + 𝑏2----- (3) 
Where W1, W2 are weight matrices, b1, b2 are bias 

terms, and σ is the activation function. 

4.3.4. Model Evaluation Metrics 

To test how the Random Forest, XGBoost and 
Artificial Neural Networks models worked in this 
study, they were evaluated using Root Mean Square 
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Error (RMSE), R-squared (R²) and Mean Absolute 
Percentage Error (MAPE). 

Every metric sees the model’s performance and 
predictions a bit differently, filling in the full picture. 
RMSE calculates the average size of errors made by 
the model, since squaring the differences between the 
predicted and real values gives more importance to 
large errors. 

Since great deviations can be a problem, this 
method helps predict infrastructure costs over time. 
When the RMSE is lower, it means the model’s 
estimates are similar to the true values, which 
signifies the model is very accurate. According to 
RMSE, XGBoost was the most accurate model in this 
study. 

This means R² tells us the part of the variation in 
the dependent variable that the independent 
variables can predict. It explains how successfully the 
model has extracted the main factors in the data. 
When the value is closer to 1, the model performs 
very well. R² values higher than 0.92 for both 
XGBoost and Random Forest mean that these tools 
are well suited for explaining how much the retrofit 
cost varies. 

MAPE is found by computing the difference 
between predicted and actual value, which is divided 
by the actual value and the result is represented in 
terms of percentages. As a result, this is information 
that is highly understandable to the viewers. 

5. DATA ANALYSIS 

In this section, the number of simulation studies 
conducted to tune the process of updating worn-out 
HVAC fluid pipes is provided. The study uses 
Random Forest, XGBoost and Artificial Neural 
Network (ANN) machine learning algorithms in a 
synthetic data set to compare their performances. To 
compare the models, RMSE, R² and MAPE are 
considered. The goal is to select the algorithm that 
estimates retrofit costs more accurately to assist 
decision-makers in planning the building repair 
accordingly. 

5.1. Data Simulation 

Figure 3, which demonstrates the histograms of 
the individual variables, reveals the distributions of 
all variables. Most features seem to be uniformly 
distributed, including such features as Pipe_Age, 
Pipe_Length, Pipe_Diameter, Flow_Rate, and 
External_Temp, which displays the intended 
randomness of the simulation process. Tricky but a 
categorical variable such as Material_Factor presents 
three peaks of 1.0, 1.1, and 1.2, which verifies discrete 
sampling. The target variables, Supplanting non-
uniformity: Retrofit_Cost is slightly right skewed 
with values like the middle going 2500-4000 units, 
and Energy_Loss is also right skewed, which means 
that most systems have moderate energy losses, but 
there are several extreme outliers. 

 
Figure 3: Visualisation of Dataset Variables’ Distribution. 
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In this study, the dataset was artificially created to 
have similarities with the ageing HVAC fluid 
pipeline networks. It contains the dataset of 2,000 
samples where each sample is a pipeline segment 
whose features include the age (in years), length (in 
meters), diameter (in meters), flow rate (in m 3 /s), 
the external temperature (in Celsius), and a factor 

that indicates how badly the material is worn. These 
variables influence two primary target outcomes: 
Retrofit Cost and Energy Loss. Table 1 provides a 
snapshot of the first five records from the dataset, 
showing the variability and realism built into the 
simulation process. 

Table 1: Sample of Simulated Dataset. 
Pipe_Age Pipe_Length Pipe_Diameter Flow_Rate External_Temp Material_Factor Retrofit_Cost Energy_Loss 

33 221.87 0.169 2.74 21.17 1.2 2995.28 164.80 

19 142.56 0.138 4.29 9.49 1.0 2927.57 124.16 

12 104.62 0.141 2.51 10.96 1.1 2801.98 47.74 

25 326.76 0.251 3.69 12.65 1.0 2718.57 136.65 

23 398.59 0.132 3.79 30.02 1.1 3954.24 142.58 

To determine the retrofit cost, pipe age, inverse 
diameter, pipe length and stochastic noise were used 
in a combination that was not linear. As well, energy 
lost in the system was estimated because of pipe age, 
the flowing liquid amount and a factor specific to the 
pipe material. 

Figure 4 is a pair plot matrix which we can use to 
get a graphical sense of interactions and possible 
nonlinearities. The factors are discernible as there is 
a significant negative trend between the two, as 

Pipe_Diameter and Retrofit_Cost tend to indicate a 
tendency of smaller diameters and larger cost of 
retrofitting. Likewise, Pipe_Age and Energy Loss are 
strongly linearly related, showing that there is a 
positive relationship between the increase of pipeline 
age and energy loss. Other feature relationships are 
either weak or random, and hence, it would be 
important to get machine learning models to take 
into consideration the complex interactions. 

 
Figure 4: Pair Plot Matrix. 
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The correlation coefficients are proven by Figure 
5, and the negative correlation between 
Pipe_Diameter and Retrofit_Cost (r = -0.82) 
demonstrates one of the strongest correlation values, 
as well as the correlation between Pipe_Age and 
Energy_Loss (r = 0.64) or between Flow_Rate and 

Energy_Loss (r = 0.67). Overall, these visualisations 
confirm the quality and heterogeneity of the 
simulated dataset and explain why the supervised 
models of the ML should be chosen to discover 
deeper relationships. 

 
Figure 5: Correlation Matrix. 

5.2. Data Pre-processing 

Before training the model, the data was separated 
into different features for the input and the target for 
the output. The feature set included all sorts of 
physical and running variables, and the targets were 
the estimated cost of updating the system and the 
energy used and lost. Next, the data was broken into 
80% training and 20% testing sets to confirm proper 
model evaluation and avoid mistakes caused by data 
leakage. The missing data or highly unusual results 
were not noticed, and all numbers were seen to be in 
their normal ranges. To make sure that the neural 
network was effective, Min-Max scaling was used to 
normalise the features in the ANN model. 

Before model training, outlier detection with Z-
score and visual examination of distribution plots 
were also performed, as part of the preprocessing. 
There was also a lack of missing values because the 
simulation took place in a controlled environment. In 
the case of ANN, features have been normalised with 

Min-Max scaling, whereas in the case of Random 
Forest and XGBoost, there was no need for scaling. 
Sequential variables, such as Material Factor, were 
kept in their numerical form because they were 
categorical. There was no need for imputation to be 
carried out, and consistency of data was proved 
before separation into training and test sets. 

The importance of the features was originally 
evaluated before the training by correlation analysis 
and permutation importance in Random Forest. No 
feature was excluded since there was not excessive 
multicollinearity (see the correlation matrix, Figure 
5), and ensemble approaches are naturally relatively 
resistant to moderate-severe multicollinearity. 
However, to have better results, future research 
could consider dimensionality reduction or 
regularisation to further improve results. 

5.3. Machine Learning Models 

Tuned hyperparameters were done using a grid 
search technique. Random Forest: Number of 
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estimators, max depth, and minimum samples split 
varied. 

Learning rate, subsample ratio and max depth in 
XGBoost were optimised. In ANN, the various layer 
patterns and learning rates were tried. To avoid 
overfitting, cross-validation was conducted on the 
training set to allow the optimisation of all models 
and the best model configuration was then chosen 
using the lowest RMSE. 

5.3.1. Random Forest Regressor 

The first model trained was the Random Forest 
Regressor. As an ensemble model that averages 
multiple decision trees, it is particularly effective in 
reducing overfitting and handling nonlinear 
relationships. The model was trained using 100 
estimators. Table 2 presents the performance of the 
Random Forest model in predicting retrofit cost: 

Table 2: Random Forest Performance. 
Metric Value 

RMSE 223.91 

R² 0.927 

MAPE (%) 5.99 

The R² value of 0.927 indicates that 92.7% of the 
variance in retrofit cost is explained by the model. 
The RMSE of approximately 224 units suggests a 
strong alignment with actual costs, while a MAPE 
below 6% reflects high predictive accuracy relative to 
actual values. 

5.3.2. XGBoost Regressor 

The second model evaluated was XGBoost, a 
boosting algorithm that sequentially optimises weak 
learners to improve performance. 

The model was trained with a learning rate of 0.1 
and 100 estimators. Table 3 shows the evaluation 
metrics for XGBoost: 

Table 3: XGBoost Performance. 
Metric Value 

RMSE 221.19 

R² 0.929 

MAPE (%) 5.90 

XGBoost achieved slightly better performance 
than Random Forest in all metrics. The RMSE was 
reduced to 221.19, and the R² increased to 0.929. The 
model’s MAPE of 5.90% further confirms its 
robustness in predicting retrofit costs with minimal 
deviation from actual values. 

5.3.3. Artificial Neural Network (ANN) 

An Artificial Neural Network (ANN) with two 
hidden layers (64 and 32 neurons, respectively) and 
ReLU activation functions was trained using the 
normalized feature set. The model was compiled 
with mean squared error as the loss function and 
trained over 100 epochs. Table 4 displays the ANN’s 
predictive performance: 

Table 4: ANN Performance. 
Metric Value 

RMSE 335.03 

R² 0.836 

MAPE (%) 8.37 

The ANN performed relatively worse than the 
ensemble models, with a significantly higher RMSE 
of 335.03 and a lower R² of 0.836. While still 
acceptable, the MAPE of 8.37% indicates that the 
ANN is less precise in cost prediction, possibly due 
to insufficient tuning or overfitting during training. 

5.4. Evaluation of Models 

To compare the predictive capabilities of the three 
models, a visual analysis was conducted. Figure 6 
displays the predictions for the first 50 samples in the 
test set across all models versus the actual retrofit 
cost values. 

 
Figure 6: Model Prediction Comparison (Retrofit Cost). 
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From Figure 3, it is evident that both Random 
Forest and XGBoost closely follow the actual cost 
trajectory, with minimal deviation across most 
samples. The ANN, while capturing overall trends, 
exhibits greater volatility and under-/overestimation 
in several instances. 

Finally, all model results were compiled into a 
single summary table for ease of comparison in Table 
5 below. 

Table 5: Model Evaluation Summary. 
Model RMSE R² MAPE (%) 

Random Forest 223.91 0.927 5.99 

XGBoost 221.19 0.929 5.90 

ANN 335.03 0.836 8.37 

XGBoost performed slightly better than Random 
Forest in every measure, so it was chosen as the most 
effective method for this job. It most effectively 
merged accuracy, reliability, and its ability to be 
generalised. Though ANN can function well, it might 
need some fine-tuning or a few more layers to be as 
effective as ensemble models. Paired t-test on the 
prediction errors (residuals) of XGBoost and Random 
Forest across the test set was used to determine the 
significance of the differences in model performance. 
There was a statistically significant better 
performance of XGBoost than Random Forest (p-
value 0.01). Moreover, 95% confidence intervals of 
RMSE were calculated based on a bootstrap analysis 
(n=1000 resamples) and revealed that XGBoost had a 
smaller error range, which also puts it further in the 
lead as robust. 

Both Random Forest and XGBoost feature 
importance plots were created to better understand 
the interpretability. The features that contributed 
significantly to retrofit cost were in that order Pipe 
Diameter, Pipe Age, and Material Factor, showing 
that these factors have a lot of influence on 
degradation and cost. The plots (Figure 6) provide 
viable data to the decision-makers and inform them 
about the specific pipeline attributes that have the 
most influence on the retrofit costs. 

The testing found that using simulation in 
machine learning is a viable and useful method for 
estimating retirement costs in mature fluid pipelines. 
Out of the models used, XGBoost stood out as the one 
that provided accurate results and was highly 
efficient. The Random Forest approach followed suit 
and is often favoured when it is essential to 
understand how the model works. While ANN’s 
performance was not great, it could do better in 
complex prediction tasks when the data sets or deep 
learning are improved. Thus, the study reaches its 
broader aim by enabling detailed planning for 

retrofit projects with ML simulations. The study 
supports the use of similar methods in other aspects 
of infrastructure engineering. 

6. DISCUSSION OF THE RESULTS 

The experts simulated different operating and 
environmental factors to see how older HVAC fluid 
pipeline systems can age and identified the data 
needed for prediction. The program acted like the 
actual situation by including how pipeline age, the 
amount of oil flowing, decay of the oil and 
refurbishment costs interact in a nonlinear manner. 
They are in line with past research that pointed out 
the use of simulation helps better illustrate how 
pipelines operate under harsh degradation 
conditions (De Jonge & Scarf, 2020; Park et al., 2023). 
The inclusion of stochastic factors such as existing 
materials and temperature variety in the simulation 
built a wide range of data for the system. Using this 
approach, it was also shown that when simulation is 
well adjusted, it can provide synthetic datasets for 
applying supervised learning models in 
infrastructure planning (Behrooz, 2016; Ding & Feng, 
2018). 

The findings also entailed the execution and 
testing of sophisticated supervised machine learning 
models, namely. Random Forest, XGBoost, and ANN 
in anticipating retrofit costs using Python and 
analysis of the model performance measured by 
RMSE, R2, and MAPE. The results revealed that 
XGBoost provided the most accurate predictions 
with the lowest RMSE (221.19), highest R² (0.929), 
and lowest MAPE (5.90%), closely followed by 
Random Forest (RMSE: 223.91, R²: 0.927, MAPE: 
5.99%). ANN did less well in terms of error, agreeing 
with the conclusions of Malek Mohammadi et al. 
(2019) and Sani et al. (2025) that tree-based models 
work better at tabular regression because they 
accurately handle the way features influence each 
other. Ensemble models proved useful in 
infrastructure applications, showing that 
understanding, swiftness and accuracy are essential. 
Brownlee (2016) and Sampedro et al. (2022) reported 
good accuracy of the gradient-boosted trees that are 
easy to adapt to new circumstances. 
Comprehensively, simulation data coupled with 
machine learning will assist in identifying some cost-
optimal ways of fixing ageing pipelines. 

The results of this study support the outcomes of 
the previous ones and even add some conclusions to 
them. As an example, Park et al. (2023) underlined 
the importance of digital twins’ application in HVAC 
systems, although they share the common reality 
with other digital-twin applications, which is the 
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dependence on real-time sensor data, which presents 
practical constraints. This is what our study will deal 
with when it demonstrates that simulation-based 
synthetic data may serve as a reasonable possibility. 
On the same note, the worse performance of ANN 
confirms the findings of previous studies conducted 
by (Malek Mohammadi et al., 2019), in which tabular 
data shows bias to the tree-based ensemble models 
rather than deep learning with a small sample size. 
Our model comparison is more rigorous than that of 
Sani et al. (2025) based on pipeline flow predictions 
made solely by use of RF. These results further 
substantiate the fact that XGBoost and RF can be used 
in the cost-prediction of infrastructures and have 
more provable relevance to operational planners. 

6.1. Sensitivity Analysis 

The sensitivity of the set of model outputs on the 
input features was determined using the one-factor-
at-a-time (OFAT) analysis on the trained XGBoost 
model. Some of the factors were varied 
systematically, that is, holding others constant, Pipe 
Age, Flow Rate, and Pipe Diameter. Findings showed 
that the cost of retrofit is most sensitive to Pipe 
Diameter (sharp inverse relationship), and secondly, 
the Pipe Age. Energy Loss was very sensitive to Flow 
Rate and Age (see figure 6). These results agree with 
correlation coefficients and justify the model 
behaviour against engineering expectations. 

7. THEORETICAL IMPLICATIONS 

By merging stochastic decision theory and 
simulation-driven machine learning models in this 
study, researchers can make improvements to 
infrastructure asset management theory. Retrofit 
planning for pipeline systems often assumes that 
every factor can be predicted with certainty 
(Bertsekas, 2012). By using a stochastic approach, the 
researchers admit that the processes leading to 
degradation, the environment and operating 
conditions may change randomly. Thanks to 
simulation, realistic and synthetic data now allow us 
to simulate uncertainties in predictive computing. 
The study also explores the principles of machine 
learning as applied to engineering. The comparison 
of these three algorithm types indicates that XGBoost 
achieves better results with nonlinear and very 
unpredictable data. The approach is compatible with 
other research on predictive maintenance, using 
these findings to support the estimation of costs in 
retrofitting HVAC pipelines, a topic that is not well 
explored in the same area. This approach is also 
helping to expand research on digital twins and 
smart infrastructure, since making decisions 

involving data is crucial. It is shown in this study that 
simulation-generated data is useful for supervised 
learning, which validates and supports hybrid 
modelling ideas. This makes it possible to unify 
infrastructure management frameworks, following 
an intelligent approach by mixing simulation, 
predictive analytics and stochastic approaches in 
decision-making. 

8. PRACTICAL IMPLICATIONS 

This research allows for making cost-effective 
decisions about upgrading ageing fluid systems in 
HVAC systems. Officials responsible for 
infrastructure management are under growing 
demand to invest more wisely as both the budget and 
demands increase. Overall, using simulation and ML 
for degradation scenarios is not only quicker and 
more affordable, but also more accurate and useful in 
handling building upkeep ahead of time. Rather than 
addressing failures, infrastructure managers might 
review areas where the expense could rise and 
arrange for necessary upgrades based on this 
information. Since Google Colab uses Python, the 
methodology is available and can be reused without 
requiring costly software. For this reason, this is 
valuable to institutions or municipalities that have 
low resources. It is also notable that the study 
showed XGBoost to be the best model for guessing 
the prices of retrofit projects. As a result, 
professionals have an official instrument they can 
apply in their daily work. Recognising the potential 
dangers in advance from the model results helps 
decide where to spend money, what to buy and when 
to work, boosting both how well the company 
operates and its resilience to dangers. Using 
simulation-driven ML, this research helps plan 
retrofits more effectively, which can be applied to 
managing fluid pipeline networks in various fields, 
including HVAC, water, gas and industry. 

9. LIMITATIONS AND FUTURE DIRECTIONS 

Even though the study forms a good base for 
using simulations in retrofit planning, it does 
encounter limitations. Although the data is 
accurately built, it still might not show how a real-
world pipeline can decay. Sometimes, biases in the 
input assumptions of simulation models would pass 
to the machine learning models, since simulation 
models are built on these assumptions. In addition, 
although it reviewed three machine learning 
algorithms, it did not try advanced deep learning 
(LSTM and CNN models for time series) or Bayesian 
regression, which can clearly describe how sure 
predictions are. Even though the Artificial Neural 
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Network is functional, it would improve its results 
with some hyperparameter optimisation, additional 
dropout or by adding more layers. In this study 
phase, a deeper analysis of how energy is lost was not 
carried out for the predictions constructed. Studies in 
the future could use approaches that do both 
regression for retrofit costs and optimisation of 
energy efficiency. It would also be beneficial if the 
framework were tested on datasets that come from 
HVAC operators or record-keeping in municipal 
pipelines. More work should be done on creating 
spatial models of pipeline networks with machine 
learning and on using IoT data in real-time 
simulation, helping to advance digital twin 
technology for the management of infrastructure 
throughout its life. 

Although synthetic data enabled users to simulate 
a realistic scenario by controlled means, the 
unpredictable behaviour of real-world HVAC 
networks may not be completely accounted for in the 
synthetic information. 

The transfer of the model to unavailable field data 
is still a pending issue. Partially counterbalancing 
this, the degradation and cost trends in the 
simulation were also compared to empirical trends in 
(Bayani & Manshadi, 2022), which have been deemed 
approximately realistic. However, future work is 
indicated as future validation in the field with 
operational data sets to help increase usability in the 
real world. 

10. CONCLUSION 

The framework introduced in this study allows 
for combining simulations and machine learning to 
help plan cost-friendly retrofits in older air and water 
pipe networks. The study showed that considering 
items in poor condition or specific examples of 
deterioration, with synthetic data, is a solid approach 
to helping infrastructure decision-making. Based on 
the test results, XGBoost performed the best among 
the Random Forest, XGBoost and Artificial Neural 
Networks models, reaching the lowest RMSE, MAPE 
and maintaining the highest R² score. This provides 
evidence that ensemble methods are useful with 
variable engineering data and can be used for 
estimating the cost of retrofitting buildings. 
Stochastic simulation is included so that predictions 
reflect changes in pipe age, water flows and stressors 
from nature, which makes this approach suitable for 
safely planning infrastructure. It combines concepts 
from stochastic models, simulation and artificial 
intelligence to contribute both in theory and practice. 
Since it can be used and adjusted easily with open-
source tools, anyone interested in AI across the globe 
can use it. All in all, the research improves HVAC 
infrastructure predictions and presents a plan that 
future studies in related areas can follow. Real-world 
data, dynamic simulation and multi-objective 
modelling can help this framework to become an 
important feature of future infrastructure asset 
management systems. 
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