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ABSTRACT

Ageing Heating, Ventilation, and Air Conditioning (HVAC) fluid pipeline systems pose significant operational
and economic challenges due to degradation, energy inefficiency, and high retrofit costs. This study aims to
develop a simulation-driven, machine learning-based framework to accurately predict retrofit costs and
support cost-effective decision-making for ageing pipeline networks. A quantitative research methodology was
adopted, where synthetic data were generated via stochastic simulation using Monte Carlo techniques in
Python (NumPy and Pandas). Three supervised machine learning models, Random Forest, eXtreme Gradient
Boosting (XGBoost), and Artificial Neural Network (ANN), were implemented and evaluated using RMSE, R?,
and MAPE as performance metrics. The results showed that XGBoost achieved the best performance with an
RMSE of 221.19, R? of 0.929, and MAPE of 5.90%, followed closely by Random Forest, while ANN
underperformed with an RMSE of 335.03. XGBoost and Random Forest are closely aligned with actual retrofit
costs, indicating strong predictive accuracy. The study concludes that ensemble models trained on simulation-
derived data offer a robust solution for proactive retrofit planning. The findings have significant implications
for enhancing infrastructure resilience and optimising maintenance investment. However, the study is limited
by the use of synthetic data and recommends future work with real-world datasets and expanded modelling
techniques for multi-objective predictions.
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1. INTRODUCTION

Managing and improving infrastructure for
energy efficiency is challenging because of the issues
with ageing HVAC pipelines. With ageing pipelines,
their efficiency drops, resulting in increased costs,
decreased energy use and higher risks for failure.
With fluid pipeline networks receiving greater use in
city infrastructure, it is crucial to retrofit them
efficiently. The study proposes using a simulation
model with machine learning to help make the best
decisions on retrofitting, supported by predictive
analytics.

HVAC (Heating,  Ventilation and  Air
Conditioning) pipelines are the major points to
consider providing the indoor quality of the
environment and sustaining levels of energy
efficiency through conducted chilled or heated water.
The systems are based on a closed-loop piping and
pumping circulation and heat exchangers to circulate
thermal loads. The efficiency of HVAC pipelines
deteriorates over time as the pipelines become
clogged with internal corrosion, fouling, fatigue at
joints, and sedimentation, which could slow down
flow and adversely affect the thermal transfer
performance of the pipelines (Liu et al., 2024). This
causes more energy consumption, an imbalance in
temperature regulations, and an increase in working
expenses. To prevent such burdens and risks, the
replacement or inefficiency of a piping system as old
as HVAC is a significant problem both in the modern
urban infrastructure, where energy efficiency is both
an environmental and economic necessity.

Recent findings have suggested digital twins and
the use of sensors in diagnosis, which in many cases
involve large-scale data in real-time, which is not
always available or arrives at a manageable cost
(Shaheen et al., 2024). Hybrid methods using a
combination of simulation and predictive modelling,
as well as machine learning, have also displayed
potential in more recent times. As an example, Taheri
et al. (2021) used the deep learning model to predict
the pressure drops in the HVAC systems, whereas
Khosravian (2025) studied the ML and CFD-based
models to estimate thermal efficiency in pipelines.
Only a few studies, however, are available
concerning merging simulation-based synthetic data
and supervised ML algorithms specifically designed
to work with cost-oriented retrofit planning. This
paper fills that gap by proposing a framework which
makes use of simulated performance degradation
scenarios and machine learning in order to promote
sound decision-making.

Significant infrastructure systems such as
buildings, factories and district heating networks

depend mainly on fluid pipelines in HVAC systems.
Over the years, pipelines may wear and perform
worse due to corrosion, scaling, thermal fatigue and
similar causes (Behrooz, 2016). Improving pipeline
networks through retrofitting is seen as a good way
to restore their performance. Nevertheless, since
retrofitting a building is both costly and complex,
planning for it must use reliable data and be
financially justified. Advancements in simulation
and ML provide useful tools for planning
infrastructure using data. With network simulations,
planners can observe changes in fluid dynamics and
practice retrofits with virtual tests (Park et al., 2023).
Pairing simulated data with ML technology allows
for building models that estimate the rate of decline,
related costs and efficiency after various retrofit
options are considered (Alrabghi & Tiwari, 2015).

Improper HVAC pipeline retrofitting may also
increase its operation costs by 25% a year, as
retrofitting poorly designed pipelines may struggle
to handle the flow and cause pressure losses,
resulting in a wastage of energy, along with capital
expenses since retrofit investment is mismanaged
(Behrooz & Boozarjomehry, 2017). This necessitates
the absolute presence of well-based planning tools
that could be guided by data.

1.1. Problem Statement and Literature Gap

The majority of models used for retrofitting fluid
pipelines in civil and mechanical systems are still
based on traditional and manual techniques (Lee et
al., 2020). They often neglect the uncertain variations
in pipeline performance and leave out uncertainties
in economic aspects. Furthermore, some researchers
argue that while simulation tools are popular in
design and fault forecasting, incorporating their data
with advanced supervised ML models for retrofit
planning is still rare (Sani et al., 2025). Evaluating
various machine learning models by using standard
metrics is not commonly included in current
literature, although this is necessary for judging
which models are suitable and appropriate to use
(Chen & Guestrin, 2016). Few studies have tackled
using simulation-based datasets together with
interpretable and scalable AI models for the
maintenance of ageing HVAC systems (David, 2024;
Kliangkhlao et al., 2024; Nashruddin et al., 2025).
Therefore, the study introduces a reliable ML
approach supported by simulations to assist
decision-makers in identifying the most cost-saving
retrofit strategies when there is uncertainty.

1.2. Aims and Objectives

This research aims to create a model that uses
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simulations and machine learning to optimise cost-
effective planning for the modification of older fluid
pipeline networks. The specific research objectives
are

To simulate the performance degradation and
retrofit scenarios of ageing fluid pipeline networks
under varying operational and environmental
conditions, and generate a comprehensive dataset for
predictive modelling.

To implement and compare advanced supervised
machine learning models for predicting retrofit costs
and performance outcomes, and evaluate their
effectiveness.

1.3. Significance of the Study

The study introduces a data-focused technique for
retrofitting infrastructure that can benefit the
industry. It brings together simulation modelling and
machine learning to support decision-making by
providing approaches for decision-makers on where
to invest their resources. This study makes use of
Google Colab, a remote cloud service, to ensure
others can access and reproduce the methodology
and use it in other types of pipeline networks aside
from HVAC. Moreover, stochastic programming
tools, after their use, enable the planners to consider
risky elements, which create more solid decisions
concerning infrastructure development.

2. LITERATURE REVIEW

The recent trend toward modernisation of ageing
fluid pipeline networks, especially HVAC networks,
has led to much investigation into innovative
predictive and optimisation approaches. The
infrastructure of fluid pipeline systems and HVAC
networks is becoming outdated; scientists are paying
more attention to the use of more sophisticated tools
that would predict and enhance their effectiveness.
One can now use modelling and ML to determine
wear in the pipelines and chart appropriate retrofits
that are not too expensive. In the current literature
review, prior work that entails the simulation in data
generation together with the application of ML in
predicting the performance in the fluid infrastructure
has been reviewed and evaluated in terms of their
usefulness in retrofit projects. The review below thus
discusses the research objectives for the simulation of
aged pipelines, the application of machine learning
techniques and the guidelines pertaining to the same.

2.1. Simulation of Ageing Fluid Pipeline
Networks for Data Generation

The aged or updated networks that are speculated
in fluid pipelines need to be simulated to get

knowledge about the dynamics of the system and to
generate data-driven models. When using the model
examples, engineers may trust that the flow may be
modelled with EPANET or OpenFOAM and the
pressures distributed and losses of water energy
measured in water systems (Arandia & Eck, 2018;
Rettenmaier et al., 2019). They can also assist in
duplicating the destruction that would be caused on
the pipelines by scaling, corrosion or high
temperatures. In their analysis, Kazi et al. (2024)
stochastically modelled gas pipelines because the
demand in the gas market is uncertain. The paper
demonstrated that the probabilistic simulations can
be useful, and they can indicate the alteration and
uncertainty in the pipeline actions as experienced in
the upgrade of the system. Moreover, Vilarinho et al.
(2017) relied on simulation and used the results as a
training set for ML models to optimise pipeline
maintenance with dependability standards.

Park et al. (2023) examined the use of digital twin
technology for the HVAC industry by processing
data from sensors and combining it with simulations
to keep a watch on system performance. The use of
this approach suggests that the study can join
degradation simulation data with other, real or
synthetic, data to accurately represent training data.
Even though advanced tools are available, a lot of the
current research uses models that do not represent all
the changes and wuncertainty found in actual
pipelines. There are still a few methods that rely on
simulations to provide organized and labelled data
used for developing further machine learning
techniques. This study used current simulation
programs to produce data that displays various
ageing and retrofitting scenarios and helps train and
validate predictive models under good conditions.

2.2. Application of Machine Learning Models
for Predictive Retrofit Planning

Civil infrastructure uses widely supervised
machine learning models for tasks like predicting
faults, planning maintenance and estimating existing
risks. Random Forest (RF), Extreme Gradient
Boosting (XGBoost) and Artificial Neural Networks
(ANNSs) are well-known as they perform well, handle
nonlinear relationships and can work with large
datasets. In the context of predictive maintenance,
Random Forest can be used because it deals well with
a lot of data and complicated relationships between
the variables (Tang et al., 2018). RF has also been used
by engineers in pipeline systems to predict leaks in
pipes and to gauge the remaining life span of the
installed facilities, and to predict flow losses. They
introduce models that can be interpreted using RF
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that are not sensitive to much variance (Sani et al.,
2025). It was observed that XGBoost was more
efficient than other algorithms in managing both
regression and classification problems because of
being able to efficiently manage missing values and
utilising only a few traits (Biau et al., 2019).

According to Heymann and Schmitt (2023), the
XGBoost was efficient in ranking the important
degradation factors with respect to their feature
importance to monitor the health of pipelines. A
collection of Artificial Neural Networks has received
high interest due to their ability to exhibit nonlinear
relationships. Malek Mohammadi et al. (2019) noted
that ANNs work well in both spatial and
longitudinal =~ predictions  of  infrastructure
degradation if they are exposed to abundant training
data. Simultaneously, they noted that this method is
not always interpretable, which makes it difficult
when the engineer would desire to explain decisions
unambiguously.

Random Forest, XGBoost and ANN were chosen
on the basis of the fact that they have achieved good
results on structured tabular data. Ensembles, such
as RF and XGBoost, are especially suitable in cases of
nonlinearity, = multicollinearity, —and  variable
interactions, as well as low preprocessing versus
models, such as Support Vector Machines (SVM).
SVM and linear regressions were taken into account,
but could not generalise well in non-linear form or
high-dimensional artificial data that negatively
affected their usability. ANN was also added to see
how it performs on the deeper, non-linear
interactions; however, interpretability and
overfitting were a concern.

Most of the time, testing these models involves
using both error-based and correlation-based
metrics. To measure prediction errors, RMSE and
MAPE are preferred, and the coefficient of
determination (R?) rates how much a model explains
the variance in the output. The authors indicate that
it is especially important to use these metrics for
benchmarking models before using them to decide
on infrastructure projects.

While lots of research work on ML for pipeline
diagnostics exists, not many have compared various
ML models using identical datasets computed with
simulators. It is also true that most methods do not
take uncertainty into account, even though this is
essential for planning future building upgrades. By
training and comparing RF, XGBoost and ANN
models on data created by a simulation, this research
uses RMSE, R?2 and MAPE to find the most reliable
predictors for how much retrofit would cost and how
it would perform.

3. THEORETICAL FRAMEWORK

The methodology is based on Stochastic Decision
Theory and promotes decisions to be made under the
probability and optimisation (Bertsekas, 2019). Such
a theory can be used to formally assess potential
retrofits by checking the most probable scenarios and
the effects of the changes in usage, weather and
damage to materials. The study executes the
stochastic theory of the decision framework using
simulation data on various situations of the pipeline
network and learning the same. Such an approach
not only assists planners to choose optimal retrofit
strategies most of the time it also provides
knowledge of the risk and the scope of options that
can be expected. The focus on expected value and
minimising errors in decision optimisation is
supported by using model evaluation metrics.

The use of the stochastic decision theory is shown
in the fact that uncertainty was added through Monte
Carlo simulations in various pipeline degradation
scenarios. It was then learned that the retrofit costs
have an expected value through the ML models that
are used in the supervised learning and are
approximations of the value function in the
stochastic ~ decision  theory.  Although not
encountered as a reinforcement learning problem,
the predictive model presents a substitute that can be
used to make decisions about retrofit strategies in the
face of uncertainty.

Although the concept of stochastic programming
is applied in this paper, it did not employ a formal
structured description as it contains decision
variables, objective functions, and constraints. The
structure, however, can be augmented as a two-stage
stochastic program in which the decision on
strategies on retrofits is to be made in the first stage,
and the second stage models retrofit cost as a random
variable depending on the scenarios of pipeline
condition. Subsequent efforts can refine this structure
into one in which optimization is embedded as part
of the planning,.

3.1. Literature Gap

Although simulation and machine learning have
long been used in the industry, most studies focus on
them independently. Simulations help with testing
systems under stress, whereas ML models are
created using past data or data collected from
sensors. This study combines generating data
through simulation and advanced learning models to
help guide the retrofitting of old HVAC pipelines.
There is not enough literature covering the
importance of models that are both accurate and can
be easily explained in infrastructure planning. Even
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though such models as RF, XGBoost and ANN have
always been tested in different infrastructure
domains individually, only a few studies compare
these models using consistent data and a single way
of measuring the results. This study helps by
measuring the models and seeing which ones are
more appropriate for designing retrofits. Another
critical issue is related to measuring how uncertain
the results are. This study applies stochastic models
to both data collection and analysis to reflect the real-
life challenges faced by infrastructure. Embedding
these chance elements in simulation-ML frameworks
allows this study to present a novel and efficient way
to plan updates for old fluid networks.

4. RESEARCH METHODOLOGY

This section includes the process and
methodology behind the creation of a simulation and
machine learning framework for low-cost updating
of aged fluid pipelines, particularly in HVAC
systems. The approach is made to handle uncertainty
that often affects pipes while making predictive
models for assessing retrofitting. The quantitative
approach leads the research to use simulation to
create the data, machine learning for making
predictions and performance measures to assess each
model. Pretty much everything, including data
processing, building models and visualising the
results, is done using Python with Google Colab.

4.1. Research Method and Design

It uses various computational approaches and
predictive methods in its research. Through
simulation and the use of supervised machine

Train
Models

learning, the design can predict both the cost and the
performance of retrofits on ageing fluid pipelines.
Simulation helps to prepare data that models can
learn from, which is based on actual physics
occurring in different situations (Alrabghi & Tiwari,
2015; Park et al., 2023). The use of numbers in the
field makes it possible to measure objectively,
analyse statistics and apply findings to a wide range
of examples. The approach relies on stochastic
modelling, as it deals with the fact that pipe ageing
and related problems are mostly random and
unpredictable. According to decision theory, actions
for retrofitting systems are planned by looking at
expected results that might change as conditions
change (Busoniu et al., 2017).

The approach is based on the main principles of
operational research (OR), especially the application
of stochastic modelling as a means of making
decisions in uncertain situations and optimisation of
the distribution of resources. Simulation applied in
the generation of a scenario is in line with other
general methods on discrete-event models prevalent
in OR. In addition, the models applied as machine
learning fit into a bigger decision-support system
based on prediction, which is within the tradition of
the OR to merge analytical models and
computational intelligence to solve strategic
problems related to infrastructure investment. The
approach involving the combination of simulation,
uncertainty modelling, and predictive analytics
reflects the current OR models of asset management
and optimising maintenance.

The study’s structure follows a sequence in Figure

Figure 1: Study Framework.

4.2. Data Collection Techniques

In this study, stochasticity in a simulation model
was achieved through Monte Carlo simulation of
various degradation trends of HVAC pipelines in
changing circumstances. Randomness was included
in input values of the simulations on simulated age
progression of the pipes, material degradation
coefficient (they were sampled through a uniform
sampling distribution) and changing operational
parameters such as flow and external temperature.
This enabled it to be able to create different scenarios
that depict the uncertainty in the real world about

pipeline performance. The stochastic framework
made the resulting dataset more heterogeneous,
including the variability not only in the sense of static
inputs but also in the patterns in the degradation of
the performance over time. This is a method of
probabilistic training that enhances training machine
learning models to generalise within a variety of
possible future retrofit scenarios.

The data for this study were obtained through
simulation modelling of pipelines affected by ageing.
The simulations reflect how pipelines deteriorate
over time due to different flow rates, temperatures,
pressure drops and changes in materials (Bayani &
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Manshadi, 2022). Every simulation scenario reflects a
distinct arrangement, upgrading state or likelihood
of failure. Main output variables are the pressure
drop, the flow decrease, energy losses and the
expected expenses for upgrading. For supervised
learning models, the variables in the dataset are
assigned as dependent variables (Hyndman &
Koehler, 2006). This simulation model considers the
pipeline diameter, its total length, its age, the
material it is made of and the rate of flow inside it
and the impact of different environmental factors on
its performance (Malek Mohammadi et al., 2019).
Using Monte Carlo techniques in simulations allows
for including different cases of degradation within
the dataset (Li & Guan, 2016). The acquired data is
managed and prepared through Pandas and NumPy
in Python. It is necessary to scale, encode (for
categorical data) and find outliers to get the model
ready for processing. After preparation, the final data
is divided into an 80:20 training and testing split.
The simulations were done using Python 3.10, and
stochastic sampling was done through NumPy, and
data structuring through Pandas. Although physical
CFD models, such as OpenFOAM, were not used, the
process of simulation implemented degradation
logic in terms of parameterised equations that
approximated real-world hydraulic losses. Every

Data Data
Generati Preproce
on ssing

(Python:
Pandas,

(Ageing
scenarios
) NumPy)

simulated scenario was considered a different Monte
Carlo iteration, and between 5,000 simulations were
performed to provide statistical convergence.
Boundary conditions enclosed the length of the pipes
between 50-500 meters, diameter between 0.05-0.3
meters and a temperature that varied between -10 °C
to 45 °C. Convergence was confirmed by tracking the
stability of the distribution of output (e.g., average
cost retrofit) of further iterations of the batch. There
were no mesh sizes needed since the study and
synthetic data generation were using instead of
meshed geometries. Nevertheless, realism of
simulations was also tested by comparing the sample
outputs with reference to empirical degradation
profiles reported in the literature (Bayani &
Manshadi, 2022).

4.3. Data Analysis Method

Data scientists in Python use the following three
machine learning models: Random Forest (RF),
Extreme Gradient Boosting (XGBoost) and Artificial
Neural Networks (ANN). Using the dataset made
from the simulations, the model was trained to
estimate the cost of retrofitting and calculate energy
savings and lower pressure loss. The following figure
2 indicates the analysis flowchart used in this study.

AT/ML Model
Model Ewvaluati
Training on

(RF (RMSE,

Retrofit
Insights

&
Decision
Support

XGBoost Rz,

. ANN) MAPE)

Figure 2: Analysis Flowchart (Al/ML-Integrated Predictive Modelling Framework).

Three metrics are used to evaluate the models:
RMSE, R? and MAPE.

4.3.1. Random Forest Regression

Random Forest uses multiple decision trees to
train its model and predicts by averaging the output
of the trees (Breiman, 2001). Its prediction for a given
input x is (in equation 1):

9= 230 £l (1)

Where f_t (x)the prediction of the t-th tree and T
is is the total number of trees.

4.3.2. XGBoost

XGBoost produces regression trees step by step
and applies a regularisation to generalise the trees.
The model minimises the following objective
(equation 2):

L =YL 10w 9) + 2k Qfi)——(2)

Here 1 is the loss function (e.g., squared error),
Q(f_k) =yT+1/2Allwl12 is the regularisation term for
each tree fk, with T as the number of leaves and w the
weights (Chen & Guestrin, 2016).

4.3.3. Artificial Neural Network (ANN)

An ANN includes input, hidden and output
layers and uses nonlinear activities (such as ReLU).
The output y“for input x is calculated as (equation 3):

Y= oc(W,.c(W;.x + b)) + by-—-- 3)

Where W1, W2 are weight matrices, b1, b2 are bias
terms, and o is the activation function.

4.3.4. Model Evaluation Metrics

To test how the Random Forest, XGBoost and
Artificial Neural Networks models worked in this
study, they were evaluated using Root Mean Square
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Error (RMSE), R-squared (R?) and Mean Absolute
Percentage Error (MAPE).

Every metric sees the model’s performance and
predictions a bit differently, filling in the full picture.
RMSE calculates the average size of errors made by
the model, since squaring the differences between the
predicted and real values gives more importance to
large errors.

Since great deviations can be a problem, this
method helps predict infrastructure costs over time.
When the RMSE is lower, it means the model’s
estimates are similar to the true values, which
signifies the model is very accurate. According to
RMSE, XGBoost was the most accurate model in this
study.

This means R? tells us the part of the variation in
the dependent variable that the independent
variables can predict. It explains how successfully the
model has extracted the main factors in the data.
When the value is closer to 1, the model performs
very well. R? values higher than 0.92 for both
XGBoost and Random Forest mean that these tools
are well suited for explaining how much the retrofit
cost varies.

MAPE is found by computing the difference
between predicted and actual value, which is divided
by the actual value and the result is represented in
terms of percentages. As a result, this is information
that is highly understandable to the viewers.

Ape_Age

Ape_Longth

5. DATA ANALYSIS

In this section, the number of simulation studies
conducted to tune the process of updating worn-out
HVAC fluid pipes is provided. The study uses
Random Forest, XGBoost and Artificial Neural
Network (ANN) machine learning algorithms in a
synthetic data set to compare their performances. To
compare the models, RMSE, R? and MAPE are
considered. The goal is to select the algorithm that
estimates retrofit costs more accurately to assist
decision-makers in planning the building repair
accordingly.

5.1. Data Simulation

Figure 3, which demonstrates the histograms of
the individual variables, reveals the distributions of
all variables. Most features seem to be uniformly
distributed, including such features as Pipe_Age,
Pipe_Length, Pipe_Diameter, Flow_Rate, and
External Temp, which displays the intended
randomness of the simulation process. Tricky but a
categorical variable such as Material_Factor presents
three peaks of 1.0, 1.1, and 1.2, which verifies discrete
sampling. The target variables, Supplanting non-
uniformity: Retrofit Cost is slightly right skewed
with values like the middle going 2500-4000 units,
and Energy_Loss is also right skewed, which means
that most systems have moderate energy losses, but
there are several extreme outliers.

Apo_DHamater
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Figure 3: Visualisation of Dataset Variables’ Distribution.
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In this study, the dataset was artificially created to
have similarities with the ageing HVAC fluid
pipeline networks. It contains the dataset of 2,000
samples where each sample is a pipeline segment
whose features include the age (in years), length (in
meters), diameter (in meters), flow rate (in m 3 /s),
the external temperature (in Celsius), and a factor

that indicates how badly the material is worn. These
variables influence two primary target outcomes:
Retrofit Cost and Energy Loss. Table 1 provides a
snapshot of the first five records from the dataset,
showing the variability and realism built into the
simulation process.

Table 1: Sample of Simulated Dataset.

Pipe_Age Pipe_Length | Pipe_Diameter | Flow_Rate | External_Temp | Material_Factor | Retrofit_Cost | Energy_Loss
33 221.87 0.169 274 21.17 1.2 2995.28 164.80
19 142.56 0.138 4.29 9.49 1.0 2927.57 124.16
12 104.62 0.141 251 10.96 11 2801.98 47.74
25 326.76 0.251 3.69 12.65 1.0 2718.57 136.65
23 398.59 0.132 3.79 30.02 11 3954.24 142.58

To determine the retrofit cost, pipe age, inverse
diameter, pipe length and stochastic noise were used
in a combination that was not linear. As well, energy
lost in the system was estimated because of pipe age,
the flowing liquid amount and a factor specific to the
pipe material.

Figure 4 is a pair plot matrix which we can use to
get a graphical sense of interactions and possible
nonlinearities. The factors are discernible as there is
a significant negative trend between the two, as

ol |

"

Pipe_Diameter and Retrofit_Cost tend to indicate a
tendency of smaller diameters and larger cost of
retrofitting. Likewise, Pipe_Age and Energy Loss are
strongly linearly related, showing that there is a
positive relationship between the increase of pipeline
age and energy loss. Other feature relationships are
either weak or random, and hence, it would be
important to get machine learning models to take
into consideration the complex interactions.

{ 1
O 20 Ne @0 W) .l
el

“
e

T
e

Figure 4: Pair Plot Matrix.
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The correlation coefficients are proven by Figure
5, and the negative correlation between
Pipe_Diameter and Retrofit Cost (r = -0.82)
demonstrates one of the strongest correlation values,
as well as the correlation between Pipe_Age and
Energy_Loss (r = 0.64) or between Flow_Rate and

Energy_Loss (r = 0.67). Overall, these visualisations
confirm the quality and heterogeneity of the
simulated dataset and explain why the supervised
models of the ML should be chosen to discover
deeper relationships.

Correlation Matrix

Ape_Age

Ppe Length -

Pipe_Diameter -

Flow_Rate -

External_Temp

Material_Factor

Retrofit_Cost

Energy_Loss -SRI 8

Ppe_Age -
Ppe Length -
Fow_Rate -

Fipe Diameter

100

003

0.00

-0.75

External_Temp

Matenal_Factor
Retroft_Cost -
Energy_Loss

Figure 5: Correlation Matrix.

5.2. Data Pre-processing

Before training the model, the data was separated
into different features for the input and the target for
the output. The feature set included all sorts of
physical and running variables, and the targets were
the estimated cost of updating the system and the
energy used and lost. Next, the data was broken into
80% training and 20% testing sets to confirm proper
model evaluation and avoid mistakes caused by data
leakage. The missing data or highly unusual results
were not noticed, and all numbers were seen to be in
their normal ranges. To make sure that the neural
network was effective, Min-Max scaling was used to
normalise the features in the ANN model.

Before model training, outlier detection with Z-
score and visual examination of distribution plots
were also performed, as part of the preprocessing.
There was also a lack of missing values because the
simulation took place in a controlled environment. In
the case of ANN, features have been normalised with

Min-Max scaling, whereas in the case of Random
Forest and XGBoost, there was no need for scaling.
Sequential variables, such as Material Factor, were
kept in their numerical form because they were
categorical. There was no need for imputation to be
carried out, and consistency of data was proved
before separation into training and test sets.

The importance of the features was originally
evaluated before the training by correlation analysis
and permutation importance in Random Forest. No
feature was excluded since there was not excessive
multicollinearity (see the correlation matrix, Figure
5), and ensemble approaches are naturally relatively
resistant to moderate-severe multicollinearity.
However, to have better results, future research
could consider dimensionality reduction or
regularisation to further improve results.

5.3. Machine Learning Models

Tuned hyperparameters were done using a grid
search technique. Random Forest: Number of
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estimators, max depth, and minimum samples split
varied.

Learning rate, subsample ratio and max depth in
XGBoost were optimised. In ANN, the various layer
patterns and learning rates were tried. To avoid
overfitting, cross-validation was conducted on the
training set to allow the optimisation of all models
and the best model configuration was then chosen
using the lowest RMSE.

5.3.1. Random Forest Regressor

The first model trained was the Random Forest
Regressor. As an ensemble model that averages
multiple decision trees, it is particularly effective in
reducing overfitting and handling nonlinear
relationships. The model was trained using 100
estimators. Table 2 presents the performance of the
Random Forest model in predicting retrofit cost:

Table 2: Random Forest Performance.

Metric Value

RMSE 22391
R2 0.927
MAPE (%) 5.99

The R? value of 0.927 indicates that 92.7% of the
variance in retrofit cost is explained by the model.
The RMSE of approximately 224 units suggests a
strong alignment with actual costs, while a MAPE
below 6% reflects high predictive accuracy relative to
actual values.

5.3.2. XGBoost Regressor

The second model evaluated was XGBoost, a
boosting algorithm that sequentially optimises weak
learners to improve performance.

The model was trained with a learning rate of 0.1
and 100 estimators. Table 3 shows the evaluation
metrics for XGBoost:

Table 3: XGBoost Performance.

Metric Value

RMSE 221.19
R2 0.929
MAPE (%) 5.90

XGBoost achieved slightly better performance
than Random Forest in all metrics. The RMSE was
reduced to 221.19, and the R? increased to 0.929. The
model’s MAPE of 590% further confirms its
robustness in predicting retrofit costs with minimal
deviation from actual values.

5.3.3. Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) with two
hidden layers (64 and 32 neurons, respectively) and
ReLU activation functions was trained using the
normalized feature set. The model was compiled
with mean squared error as the loss function and
trained over 100 epochs. Table 4 displays the ANN's
predictive performance:

Table 4: ANN Performance.

Metric Value

RMSE 335.03
R2 0.836
MAPE (%) 8.37

The ANN performed relatively worse than the
ensemble models, with a significantly higher RMSE
of 335.03 and a lower R? of 0.836. While still
acceptable, the MAPE of 8.37% indicates that the
ANN is less precise in cost prediction, possibly due
to insufficient tuning or overfitting during training.

5.4. Evaluation of Models

To compare the predictive capabilities of the three
models, a visual analysis was conducted. Figure 6
displays the predictions for the first 50 samples in the
test set across all models versus the actual retrofit
cost values.

Nodel Predction Comparson (Retrofit Costl

Figure 6: Model Prediction Comparison (Retrofit Cost).
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From Figure 3, it is evident that both Random
Forest and XGBoost closely follow the actual cost
trajectory, with minimal deviation across most
samples. The ANN, while capturing overall trends,
exhibits greater volatility and under-/overestimation
in several instances.

Finally, all model results were compiled into a
single summary table for ease of comparison in Table
5 below.

Table 5: Model Evaluation Summary.

Model RMSE R2 MAPE (%)
Random Forest 22391 0.927 599
XGBoost 221.19 0.929 5.90
ANN 335.03 0.836 8.37

XGBoost performed slightly better than Random
Forest in every measure, so it was chosen as the most
effective method for this job. It most effectively
merged accuracy, reliability, and its ability to be
generalised. Though ANN can function well, it might
need some fine-tuning or a few more layers to be as
effective as ensemble models. Paired t-test on the
prediction errors (residuals) of XGBoost and Random
Forest across the test set was used to determine the
significance of the differences in model performance.
There was a statistically significant better
performance of XGBoost than Random Forest (p-
value 0.01). Moreover, 95% confidence intervals of
RMSE were calculated based on a bootstrap analysis
(n=1000 resamples) and revealed that XGBoost had a
smaller error range, which also puts it further in the
lead as robust.

Both Random Forest and XGBoost feature
importance plots were created to better understand
the interpretability. The features that contributed
significantly to retrofit cost were in that order Pipe
Diameter, Pipe Age, and Material Factor, showing
that these factors have a lot of influence on
degradation and cost. The plots (Figure 6) provide
viable data to the decision-makers and inform them
about the specific pipeline attributes that have the
most influence on the retrofit costs.

The testing found that using simulation in
machine learning is a viable and useful method for
estimating retirement costs in mature fluid pipelines.
Out of the models used, XGBoost stood out as the one
that provided accurate results and was highly
efficient. The Random Forest approach followed suit
and is often favoured when it is essential to
understand how the model works. While ANN'’s
performance was not great, it could do better in
complex prediction tasks when the data sets or deep
learning are improved. Thus, the study reaches its
broader aim by enabling detailed planning for

retrofit projects with ML simulations. The study
supports the use of similar methods in other aspects
of infrastructure engineering.

6. DISCUSSION OF THE RESULTS

The experts simulated different operating and
environmental factors to see how older HVAC fluid
pipeline systems can age and identified the data
needed for prediction. The program acted like the
actual situation by including how pipeline age, the
amount of oil flowing, decay of the oil and
refurbishment costs interact in a nonlinear manner.
They are in line with past research that pointed out
the use of simulation helps better illustrate how
pipelines operate under harsh degradation
conditions (De Jonge & Scarf, 2020; Park et al., 2023).
The inclusion of stochastic factors such as existing
materials and temperature variety in the simulation
built a wide range of data for the system. Using this
approach, it was also shown that when simulation is
well adjusted, it can provide synthetic datasets for
applying  supervised learning models in
infrastructure planning (Behrooz, 2016; Ding & Feng,
2018).

The findings also entailed the execution and
testing of sophisticated supervised machine learning
models, namely. Random Forest, XGBoost, and ANN
in anticipating retrofit costs using Python and
analysis of the model performance measured by
RMSE, R2, and MAPE. The results revealed that
XGBoost provided the most accurate predictions
with the lowest RMSE (221.19), highest R? (0.929),
and lowest MAPE (5.90%), closely followed by
Random Forest (RMSE: 223.91, R% 0.927, MAPE:
5.99%). ANN did less well in terms of error, agreeing
with the conclusions of Malek Mohammadi et al.
(2019) and Sani et al. (2025) that tree-based models
work better at tabular regression because they
accurately handle the way features influence each
other. Ensemble models proved wuseful in
infrastructure applications, showing that
understanding, swiftness and accuracy are essential.
Brownlee (2016) and Sampedro et al. (2022) reported
good accuracy of the gradient-boosted trees that are
easy to adapt to new circumstances.
Comprehensively, simulation data coupled with
machine learning will assist in identifying some cost-
optimal ways of fixing ageing pipelines.

The results of this study support the outcomes of
the previous ones and even add some conclusions to
them. As an example, Park et al. (2023) underlined
the importance of digital twins” application in HVAC
systems, although they share the common reality
with other digital-twin applications, which is the
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dependence on real-time sensor data, which presents
practical constraints. This is what our study will deal
with when it demonstrates that simulation-based
synthetic data may serve as a reasonable possibility.
On the same note, the worse performance of ANN
confirms the findings of previous studies conducted
by (Malek Mohammadi et al., 2019), in which tabular
data shows bias to the tree-based ensemble models
rather than deep learning with a small sample size.
Our model comparison is more rigorous than that of
Sani et al. (2025) based on pipeline flow predictions
made solely by use of RF. These results further
substantiate the fact that XGBoost and RF can be used
in the cost-prediction of infrastructures and have
more provable relevance to operational planners.

6.1. Sensitivity Analysis

The sensitivity of the set of model outputs on the
input features was determined using the one-factor-
at-a-time (OFAT) analysis on the trained XGBoost
model. Some of the factors were varied
systematically, that is, holding others constant, Pipe
Age, Flow Rate, and Pipe Diameter. Findings showed
that the cost of retrofit is most sensitive to Pipe
Diameter (sharp inverse relationship), and secondly,
the Pipe Age. Energy Loss was very sensitive to Flow
Rate and Age (see figure 6). These results agree with
correlation coefficients and justify the model
behaviour against engineering expectations.

7. THEORETICAL IMPLICATIONS

By merging stochastic decision theory and
simulation-driven machine learning models in this
study, researchers can make improvements to
infrastructure asset management theory. Retrofit
planning for pipeline systems often assumes that
every factor can be predicted with certainty
(Bertsekas, 2012). By using a stochastic approach, the
researchers admit that the processes leading to
degradation, the environment and operating
conditions may change randomly. Thanks to
simulation, realistic and synthetic data now allow us
to simulate uncertainties in predictive computing.
The study also explores the principles of machine
learning as applied to engineering. The comparison
of these three algorithm types indicates that XGBoost
achieves better results with nonlinear and very
unpredictable data. The approach is compatible with
other research on predictive maintenance, using
these findings to support the estimation of costs in
retrofitting HVAC pipelines, a topic that is not well
explored in the same area. This approach is also
helping to expand research on digital twins and
smart infrastructure, since making decisions

involving data is crucial. It is shown in this study that
simulation-generated data is useful for supervised
learning, which validates and supports hybrid
modelling ideas. This makes it possible to unify
infrastructure management frameworks, following
an intelligent approach by mixing simulation,
predictive analytics and stochastic approaches in
decision-making.

8. PRACTICAL IMPLICATIONS

This research allows for making cost-effective
decisions about upgrading ageing fluid systems in
HVAC  systems. Officials responsible for
infrastructure management are under growing
demand to invest more wisely as both the budget and
demands increase. Overall, using simulation and ML
for degradation scenarios is not only quicker and
more affordable, but also more accurate and useful in
handling building upkeep ahead of time. Rather than
addressing failures, infrastructure managers might
review areas where the expense could rise and
arrange for necessary upgrades based on this
information. Since Google Colab uses Python, the
methodology is available and can be reused without
requiring costly software. For this reason, this is
valuable to institutions or municipalities that have
low resources. It is also notable that the study
showed XGBoost to be the best model for guessing
the prices of retrofit projects. As a result,
professionals have an official instrument they can
apply in their daily work. Recognising the potential
dangers in advance from the model results helps
decide where to spend money, what to buy and when
to work, boosting both how well the company
operates and its resilience to dangers. Using
simulation-driven ML, this research helps plan
retrofits more effectively, which can be applied to
managing fluid pipeline networks in various fields,
including HVAC, water, gas and industry.

9. LIMITATIONS AND FUTURE DIRECTIONS

Even though the study forms a good base for
using simulations in retrofit planning, it does
encounter limitations. Although the data is
accurately built, it still might not show how a real-
world pipeline can decay. Sometimes, biases in the
input assumptions of simulation models would pass
to the machine learning models, since simulation
models are built on these assumptions. In addition,
although it reviewed three machine learning
algorithms, it did not try advanced deep learning
(LSTM and CNN models for time series) or Bayesian
regression, which can clearly describe how sure
predictions are. Even though the Artificial Neural
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Network is functional, it would improve its results
with some hyperparameter optimisation, additional
dropout or by adding more layers. In this study
phase, a deeper analysis of how energy is lost was not
carried out for the predictions constructed. Studies in
the future could use approaches that do both
regression for retrofit costs and optimisation of
energy efficiency. It would also be beneficial if the
framework were tested on datasets that come from
HVAC operators or record-keeping in municipal
pipelines. More work should be done on creating
spatial models of pipeline networks with machine
learning and on wusing IoT data in real-time
simulation, helping to advance digital twin
technology for the management of infrastructure
throughout its life.

Although synthetic data enabled users to simulate
a realistic scenario by controlled means, the
unpredictable behaviour of real-world HVAC
networks may not be completely accounted for in the
synthetic information.

The transfer of the model to unavailable field data
is still a pending issue. Partially counterbalancing
this, the degradation and cost trends in the
simulation were also compared to empirical trends in
(Bayani & Manshadi, 2022), which have been deemed
approximately realistic. However, future work is
indicated as future validation in the field with
operational data sets to help increase usability in the
real world.
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