

DOI: 10.5281/zenodo.18405939

NO PYTHONS, NO PANDAS, NO ROBOTS: WHAT AI LITERACY REALLY MEANS FOR K-12 EDUCATION

Constantine Andoniou^{1*}¹*Department of Education. Abu Dhabi University, Abu Dhabi, United Arab Emirates,
constantine.andoniou@adu.ac.ae*

Received: 10/10/2025

Accepted: 10/11/2025

Corresponding Author: Constantine Andoniou
(constantine.andoniou@adu.ac.ae)

ABSTRACT

The request for AI education in schools has led to basic programming classes, robotics clubs and technology courses as the main responses. These methods show good intentions, yet they confuse learning about AI technology with actual AI literacy. The paper establishes that AI literacy exists beyond being a subject and digital tools and computer science departments cannot handle its implementation. The capability exists as a cross-disciplinary learning skill which helps students understand AI systems while questioning them and working with them in academic and social and civic environments. The paper defines AI literacy through four essential domains: (a) Critical AI Reasoning for understanding AI system classification, prediction and information generation processes; (b) Digital Ethics and Data Agency for handling consent, privacy issues, surveillance and bias problems; (c) Human-AI Collaboration for determining AI usage, intervention points and effective teamwork with AI systems; and (d) Applied AI Across the Curriculum for teaching AI throughout languages, arts, sciences, humanities and vocational subjects, instead of treating it as a standalone technical subject. The paper provides classroom examples, teacher-ready implementation ideas, and a K-12 progression model that moves from AI awareness in early years to critical and creative collaboration in upper secondary. Instead of asking schools to produce AI engineers, the model prepares students to become informed, responsible participants in AI-shaped societies. The conclusion offers concrete steps for school leaders and teacher teams who need to act now, without waiting for perfect infrastructure or specialist staff.

KEYWORDS: AI Literacy; K-12 Education; Teacher Readiness; Digital Ethics; Human-AI Collaboration; Critical AI Reasoning; Curriculum Integration; Data Agency; Cross-Curricular Design; Educational Technology.

1. WHY SCHOOLS ARE BEING TOLD TO TEACH AI WITHOUT A PLAYBOOK

School systems everywhere are being asked to prepare students for an AI-driven world, but the request usually arrives without instructions, without examples, and without any shared sense of what preparing actually looks like (UNESCO, 2023). The circular promise goes like this: students need AI skills because the world is changing, and the world is changing because of AI, therefore schools must urgently teach AI. That's the full argument. Nothing more. No roadmap. No scaffolding. No guidance beyond slogans.

So, schools do what schools always do when a new technology lands: they improvise. Some turn to coding. Others buy robots. Some download whatever AI lesson pack shows up first in a Google search. A few install filtering software, hoping protecting students from AI counts as teaching AI. The majority of people wish for the entire phenomenon to disappear just like 3D printing, blockchain and VR headsets did when public interest shifted to new trends.

But AI isn't fading. The technology has already been integrated into writing tools, search systems, creative applications, grading platforms, recruitment filters and decision-making systems that operate beneath our everyday activities. Students aren't waiting for a curriculum. People currently use generative AI technology in their personal lives through mobile devices and educational settings while some classrooms deny its presence. Some are using it thoughtfully. Some recklessly. Most secretly. The adults are the ones catching up.

The educational system faces an uncomfortable reality because schools lag behind due to a lack of design for modern technology which operates outside traditional computer labs. AI exists as a field of study rather than a subject for academic study. It isn't a STEM strand. The course does not function as a single unit which students complete at the end of the semester. The assessment method penetrates through all academic subjects, reaches students at every stage of development and across all evaluation methods. The technology system presents obstacles to conventional beliefs about authorship, original work, creative methods, factual accuracy and educational approaches.

The educational system has adopted a standardized method to handle this problem through AI education integration in their academic programs. The educational framework exists as a storage space where AI technology can be placed alongside other subjects including coding, cyber safety, robotics and

digital citizenship. The belief provides a sense of security as it suggests that any content which appears in a syllabus can be managed. The power to control an object enables effective teaching methods to be developed for it. If it can be taught, the problem is solved.

But AI is not waiting for permission to enter classrooms. It has already arrived inside the workflow of learning itself. Students are using AI to summarize texts, generate images, write essays, design presentations, script videos, debug code, brainstorm research questions, translate languages, and simulate lab experiments. The literacy gap is not between students who have access and students who don't. The gap is between students who understand what the AI is doing—and those who only know what the AI gives them.

That is the real urgency. Not coding. Not robots. Not more devices. Understanding. Judgement. Agency.

And schools aren't being equipped for that. Teachers are being told to integrate AI without training, without time, without clarity on risks, and without any shared vocabulary for what AI literacy actually means. A term is spreading faster than its definition.

Somewhere between the policy rhetoric and the classroom reality, AI literacy became a convenient placeholder—something everyone can talk about without agreeing on anything.

Which means this paper is not about defending the importance of AI. That debate ended the moment generative models crossed into public use. The real question now is simpler and sharper:

If AI literacy is so important, why can no one properly explain what it is?

2. WHAT AI LITERACY IS NOT

AI literacy is not Python. It is not Pandas (Luckin, 2024). It is not a robot rolling across the floor while students clap politely. These things may be useful, but they are not the foundation. They are fragments. Technical fragments. And fragments are not literacy.

Literacy means the ability to understand, evaluate, and use something with intention—not just operate it (Long & Magerko, 2020). A student can learn to run a line of Python without ever understanding algorithmic bias. A student can build a robot without understanding where the training data came from, which made it behave the way it does. A student can ace a machine learning crash course and still fall for AI-generated misinformation because they never learned to question output or trace sources.

Yet most early AI education efforts start with the

wrong hero: the tool. Teach the tool, assume the thinking will follow. It rarely does.

Here are the three default shortcuts schools take when they don't know what AI literacy means, but feel pressured to act anyway:

Shortcut 1: AI = Coding

The logic goes like this: AI is software → software is code → therefore AI literacy = teaching programming. But most AI systems used by students today are not coded by them. They are consumed, queried, adapted, remixed, automated. Students don't need to build AI models to be affected by them. They need to understand how the models frame reality.

Shortcut 2: AI = Robotics

Robotics is appealing. It's visual, physical, and makes parents feel something is happening. But robots are just one edge of AI, not the center. The core of AI today is not a moving object in a classroom – it's a hidden inference system in the cloud.

Shortcut 3: AI = Plug-In Curriculum

Schools ask vendors for AI curriculum in a box, which usually means 6-10 scripted lessons written outside the school context. These give teachers temporary relief but no lasting capability. The school becomes dependent on the product instead of knowledgeable in the field.

The educational system creates a contradictory situation because its teaching of AI readiness leads students to learn how to use systems that outside developers originally built.

The educational approach to AI literacy which emphasizes technical aspects creates problems because it works best for students who already show strong technological abilities. The discussion excludes all people who require ethical knowledge along with critical thinking abilities and historical background information.

AI literacy is not a niche for STEM kids. It's not a bonus unit. The skill requires immediate application rather than waiting for available time. AI literacy stands as a fundamental civic skill which shares more similarities with media literacy and scientific reasoning than programming abilities.

The actual definition of innovation begins with thinking rather than tools, languages or products.

3. A PRACTICAL DEFINITION OF AI LITERACY FOR SCHOOLS

AI literacy for schools needs to fulfill five fundamental requirements to achieve its definition: (a) It has to apply to every learner, not just those who will study computer science; (b) The system requires basic training from non-specialist teachers who

possess learning expertise rather than machine learning expertise; (c) It has to work across subjects, not only in the technology block; (d) It has to grow developmentally from early years to upper secondary; and (e) The system needs to train students for independent decision-making with personal accountability instead of focusing on machine operation speed and control.

The following definition fulfils all the requirements of the tests: AI literacy represents the capacity to work with AI systems through responsible and effective methods which understand specific contexts.

The three essential verbs for this task are understand, question and collaborate; the three capacities consist of cognitive abilities together with ethical and social competencies. Students need to understand fundamental AI operations and their limitations to grasp the concept of understanding. The process of questioning involves identifying both biased information, surveillance activities, manipulative tactics and hidden data. AI functions as a collaborative tool for thinking alongside humans instead of taking their place in the thinking process.

The definition lacks specific technical definitions which create confusion about its scope. It is not software dependent. It is not tied to a language or a device. The system operates as an educational resource because teachers can present its material instead of needing engineers to execute its implementation.

AI literacy, when done properly, is closer to media literacy (how information is constructed), civic literacy (how power operates), scientific literacy (how claims are tested), and design literacy (how systems shape outcomes), than it is to traditional ICT skills (Ng & Luan, 2023).

The shift schools need is not from unplugged to digital, but from using tools to understanding systems.

Students don't just need to know how to use AI. They need to know: what kinds of mistakes AI tends to make, who controls the data it was trained on, why some outputs feel authoritative even when they are wrong, how AI reshapes writing, creativity, and authorship, where consent and privacy disappear in AI-enabled platforms, when to rely on AI and when to ignore it, and, how AI systems reinforce or disrupt inequality.

Without these questions, AI education becomes product training.

With them, it becomes literacy.

And literacy is the point.

4. THE FOUR CORE DOMAINS OF K-12 AI

LITERACY

AI literacy in schools will only produce meaningful results when teachers develop particular educational frameworks for teaching this subject. The framework needs to contain specific elements which teachers can easily remember and apply instead of complex abstract pillars and 15-part competency rubrics that committees create. Four domains¹ do the job. The framework includes all areas of the field but avoids excessive detail which would create instability in its structure.

Domain 1: Critical AI Reasoning. The skill no one talks about because it isn't as photogenic as robots or coding demos. The ability to evaluate AI outputs such as essays, predictions and images requires understanding their construction methods. What data patterns shaped it? What assumptions does it reproduce?" Students don't need to write neural networks to understand that all models compress the world, and compression hides choices. A basic classroom procedure which compares human-created explanations to AI-generated ones followed by student identification of absent elements enables students to develop reasoning skills right away. The current classroom resources direct their focus to this transformation because they want to study AI technology rather than supporting or opposing AI (Kharbach, 2025; WeAreTeachers Staff, 2025). That's critical AI reasoning. The process needs no technical skills yet requires absolute mental concentration.

Domain 2: Digital Ethics and Data Agency. The one that sounds polite but is actually explosive. Students are already feeding personal data into AI systems every time they upload a photo, use a filter, share an essay draft with a chatbot, or verify their face for an exam platform. AI literacy means naming the trade. What was given, what was taken, what was inferred. It also means something most curricula sidestep: consent. Not click-to-agree consent, but meaningful consent. If students don't know what their data becomes, they cannot meaningfully choose anything. Ethical AI education is more than don't cheat with ChatGPT assemblies. It's asking who benefits, who is monitored, who is misclassified, who can opt out, and who cannot. Frameworks emerging from U.S. and European schools are already placing ethics at the center, not the edges, of AI literacy (Washington OSPI, 2024; OECD & European Commission, 2025). Ethics isn't a lesson after the

project; it's the spine of the project.

Domain 3: Human-AI Collaboration. Not use AI because it's there but work with AI in ways that preserve human judgement. Students need to know when AI is helpful, when it is lazy, when it is biased, when it is too confident, and when it is flat-out hallucinating. The skill is not tool operation; it is task orchestration—being able to break a complex task into phases where AI accelerates thinking, and phases where human reflection must slow it down. A writing class that teaches students to revise an AI-generated paragraph, annotate what they changed, and explain why the change mattered builds more literacy than any prompt engineering challenge. In other words: the future is not Human vs. AI, but Human PLUS AI—if the human keeps the steering wheel (Markauskaite & Goodyear, 2024). Collaboration doesn't mean trust. It means discernment.

Domain 4: AI Across Subjects. This is the deal-breaker. As long as AI sits inside a single course, the literacy gap stays intact. A few confident, already digitally skilled students will move ahead, while the rest treat AI as someone else's specialization. The moment AI literacy enters art, history, science, languages, physical education, and careers education, the field opens. A science class analyzing AI-generated climate claims is teaching AI literacy. A visual arts class critiquing how generative models distort race and gender is teaching AI literacy. A careers lesson about automated hiring filters is teaching AI literacy. A primary class sorting AI-generated animal facts by true, false, and needs checking is teaching AI literacy. The key idea: AI is not a subject. It is a condition of learning and living.

Put simply: AI literacy is not built by learning more tools, but by widening the contexts in which AI can be questioned, resisted, repurposed, and used well.

When these four domains are present, AI literacy stops being a niche skillset and starts functioning like its older cousins—media literacy, civic literacy, design literacy. When they are missing, the school may have AI activities, but not AI education.

And yes, schools can do this with no coding, no robots, no labs, no Python, no Pandas. The resource is not hardware. It's teacher imagination plus curriculum space.

5. A K-12 PROGRESSION MODEL (AGES 5-18)

¹ This four-domain model aligns with emerging international guidelines, including the 2025 OECD-European Commission AI Literacy Framework, which similarly emphasizes critical reasoning, ethical awareness, informed collaboration, and cross-curricular

integration. While the language differs, the conceptual structure and developmental progression are consistent with these global benchmarks.

AI literacy is not something students get in one course and carry forever. It develops. It expands. It shifts from curiosity to critique to responsibility to agency. So, the question is not how do we teach AI in grade x? but how does AI literacy grow across 12+ years of schooling?

Early primary students (ages 5–8) don't need algorithm diagrams. They need awareness: that machines don't know, they guess. They need language to tell the difference between a fact and a suggestion. At this stage, AI literacy looks like comparing two answers and asking: which one feels true, and why? It looks like it's noticing when a voice assistant gets a question wrong. It looks like playing with AI image generators to see how they misunderstand simple prompts (Draw a doctor → mostly men; Show a nurse → mostly women). The goal is not mastery. It is noticing.

Students in the 9–11 age group of upper primary education move from observing to explaining. Students begin to ask about the process AI systems use to generate their output. The training process of systems replaces their natural birth process. They discover that the data received its selection from a human being. The researchers recognize that patterns exist without any form of neutrality. The system enables users to identify bias as an intentional design choice rather than a system malfunction. The current classroom activities concentrate on understanding the actions performed by the AI system. What data would it have needed to do that? The concept of literacy has transformed into a theoretical model which now excludes playful learning activities.

Ethics becomes an essential subject during the lower secondary period which spans from ages 12 to 14. Students possess enough maturity to understand how their actions result in surveillance activities, deepfakes, plagiarism alarms, and damage to their reputation and loss of privacy. The link between AI literacy and civic literacy becomes apparent at this stage. The question now shifts to identify which entities will obtain power through this application of AI. Students need to evaluate the rules that exist in their school environment against the rules that apply in public spaces. Students need to study news reports about AI system failures to determine which organizations received blame, which populations experienced negative consequences, and which populations obtained benefits. AI literacy at this point requires more than tool operation since it demands system evaluation.

The educational stage of upper secondary education starting at age 15 introduces students to

collaborative work and authorship responsibilities. Students use AI as a collaborative tool for writing, designing, building and analysis. The main research inquiry investigates when artificial intelligence enhances human mental capabilities and what specific mental processes it takes over from humans. The evaluation process encounters its most significant obstacles at this point. A student can generate a business plan with AI, but they cannot explain the reasoning behind its decisions.

Can they identify which sections require human intervention? Can they trace a claim back to a source? AI literacy at this stage looks less like technical coursework and more like epistemic accountability – students demonstrate that they can think with AI without thinking like AI.

A progression model like this has already begun appearing in state-level and international frameworks (Colorado Education Initiative, 2025; OECD & European Commission, 2025), but most are still waiting to be translated into actual classroom practice. Schools don't need to wait for perfect standards. They just need to stop treating AI as something that belongs only to older students or tech-savvy kids. The earlier the literacy begins, the less remedial the work becomes later.

The point is not to rush AI instruction downward. The point is to stop pushing conceptual understanding upward until it's too late.

6. WHAT TEACHERS REALLY NEED (AND DON'T NEED)

Most teachers don't need AI expertise. They need clarity, permission, time, and a starting point that doesn't make them feel unqualified before they begin (Lynch, Greenhow, & Gleason, 2024). The belief that AI literacy requires technical mastery is one of the biggest barriers to adoption. It turns thoughtful educators into hesitant bystanders.

What teachers don't need: a computer science degree, a full-day vendor training on the latest AI platform, a new specialist role called AI Coordinator, a list of 50 tools to memorize, or a fear-based policy document warning them what they must not do. What teachers do need: a shared language to talk about AI with students, examples of safe, low-takes classroom use, ethical guardrails they can explain, not just enforce: a way to adapt existing lessons, not build new ones from scratch, leadership that treats AI literacy as curriculum, not crisis management.

Professional development models are emerging that reflect this. Some districts are using micro-credential cluster-short teacher learning modules focused on one aspect of AI literacy at a time. Some

are building school-based AI inquiry groups, where teachers test strategies with each other before using them with students. Some are rewriting assessment rubrics to include a simple question: Where and how was AI used in this work? This shifts AI from a threat to a declared collaborator.

Teacher readiness studies repeatedly show the same pattern: confidence in AI teaching grows when teachers: (a) see real classroom examples; (b) get permission to experiment without punishment; and (c) have colleagues doing the same work (Ramazanoglu & Akin, 2024; Tenberga & Daniela, 2024). Confidence does not grow from reading ethics guidelines alone. It grows from doing the work with students, imperfectly, while supported.

The professional culture shift begins when the question changes from Are students using AI? to How are we teaching them to use it well? A school that adopts the second question is already building AI literacy, even if no one has said the phrase out loud.

And the quiet truth: teachers are already teaching AI. They just aren't being recognized for it. Every time a teacher asks, how do you know this source is reliable? or What evidence supports this claim? they are building AI literacy. The task now is to make that visible, intentional, and expandable.

7. HOW TO INTEGRATE AI LITERACY WITHOUT ADDING A NEW SUBJECT

Most schools are already overloaded. The timetable is a negotiation between subjects, exams, and hours that never stretch. The quickest way to kill AI literacy is to announce a new subject. What works instead is integration—threading AI awareness through what already exists.

English teachers can explore how AI reshapes writing voice. History teachers can analyze how algorithmic curation distorts memory and evidence. The implementation of image generators by art teachers creates conversations about authentic artistic creation, the nature of remix culture and the ability to identify biases. Science teachers can show how predictive models are used in weather systems or environmental forecasting. Every subject already contains a natural entry point. The primary challenge lies in recognizing this concept rather than beginning from nothing to develop it.

The solution requires minimal design adjustments instead of requiring a full system redesign. Students need to substitute one assignment per term with an AI-aware version. Students should reveal their AI usage through the activities of summarizing, translating, generating or revising. Assess the

implementation of AI technology instead of making a value judgment about it. Our approach to responsibility management undergoes a complete transformation because of this single inquiry.

The planning teams for cross-curricular subjects should identify appropriate subject areas for AI integration instead of forcing it into subjects that do not match. The distributed module format in certain schools includes one AI-related assignment per subject annually which collectively develops an unspoken AI literacy curriculum. The amount of work stays the same but our perception of it shifts.

Assessment follows the same logic. The assessment of students should focus on their ability to discern information by showing understanding of boundaries, explaining their decisions and detecting prejudice instead of prohibiting AI usage. Students experience lower anxiety levels when they comprehend the rules of their classroom. AI literacy education enables students to study technology instead of avoiding it.

The integration process works best when it becomes a permanent part of regular daily activities. The assignment requires students to solve a math problem that incorporates AI-generated data, complete two separate assignments which analyze human-machine metaphors in literature and examine AI-generated climate maps in geography. Nothing revolutionary. Just deliberate. Just visible.

8. OBSTACLES AND MISCONCEPTIONS IN SCHOOLS

Resistance is normal. The beginning of every educational transition involves resistance. The obstacles around AI literacy are less about hostility and more about confusion.

People commonly begin with the misconception that flawless infrastructure needs to be established first. Schools delay AI literacy because they believe they require new labs, high-speed networks and expensive devices. The first stage of AI education requires human interaction through dialogue instead of depending on technological tools. One classroom computer projecting an AI output can trigger deeper analysis than a full set of laptops.

The second stage expects that teachers must first learn about AI technology before they can effectively instruct students about it. Teachers learn literacy skills through their work with students rather than acquiring them before starting their teaching career. The same principle holds. Teachers need to show their students both curiosity and correct experimental methods. The classroom transforms into a collaborative learning environment which

enables students and teachers to find knowledge through joint discovery instead of individual displays of personal comprehension.

The third stage: AI is a threat to academic integrity. Yes, plagiarism tools struggle. The problems with integrity arise from cultural issues instead of software programming errors. Students lose their interest in cheating when they understand AI functions as an enhancement to their creative work instead of a quick solution. Many educational institutions have started using reflection statements which describe the AI involvement in completing assignments. The system provides clear visibility and educational value which surpasses the capabilities of surveillance applications.

A fourth prediction claims artificial intelligence will take over teaching duties from human educators. The voices remain in my thoughts as a persistent background noise. AI technology performs tasks which teachers have always found unpleasant such as grading draft work, creating worksheets and translating educational materials. The system fails to replace human decision-making with AI, yet it fails to recognize emotional responses and contextual understanding. Teachers create strategic methods for AI literacy education after they understand the true nature of AI.

Another belief states that AI literacy will deliver advantages to people who live beyond today. It isn't. Students apply AI tools to generate content together with their peers in their everyday work. The delay of AI education will not safeguard students because it makes them unready for the future.

Leadership creates an environment which makes challenges disappear after people get permission. Teachers require official approval to start using new educational teaching methods. That sentence changes everything. The main objective focuses on developing competence rather than imposing control and it seeks preparedness instead of imposing limitations.

9. FIRST STEPS FOR SCHOOLS THAT WANT TO START NOW

Begin with a limited amount. Choose one unit and one grade level and select a teacher who demonstrates readiness to participate. Document what happens. Reflect. Adjust.

Step 1: Develop self-awareness. Hold a staff conversation about how students already use AI. Gather examples—both responsible and reckless. Awareness always precedes policy.

Step 2: Identify natural curriculum entry points. AI technology has the ability to improve

existing educational content which needs identification. The assignment needs a new task which requires students to analyze human interpretation against AI interpretation, and manual reasoning against automated reasoning.

Step 3: Establish teacher confidence. This is the foundation for capacity development according to the third step. Offer short, voluntary sessions. The process should be called shared experimentation instead of training. Ten minutes at a staff meeting can be enough to demonstrate an idea.

Step 4: Communicate with families. The unknown causes parents to experience fear. AI technology operates through various operational systems which function within educational settings. The process of revealing information leads to trust because it converts uncertainty into belief.

Step 5: Evaluate publicly, not secretly. The classroom requires students to display their reflection work and their AI project outputs. Visibility normalizes the learning process. Students develop their ability to express their choices while teachers acquire knowledge from their peers.

These steps cost nothing. Leadership mindset serves as their primary resource instead of financial support. Schools that start modestly gain momentum because they treat AI literacy as culture, not program.

10. AI LITERACY IS NOT ABOUT CODING, IT'S ABOUT THINKING

Every technology in education eventually moves from novelty to normal. AI will too. The exact method through which schools affect this transition remains unknown because they either lead students through it directly or their actions follow the natural progression of student development.

AI literacy stands as an essential skill which people need to master in today's world. The modern world has introduced machine-generated content, as a new method for people to understand things, which represents an improvement in reading and reasoning abilities. The future of education will bring coding as a later subject while robots serve to demonstrate concepts, and educational tools will undergo transformations. The ability to question, interpret and work responsibly with others continues to be the fundamental requirement for literacy.

The educational institutions which choose to follow national standards will continue their delay until their students complete their studies. The

developers of today who work with AI systems methodically will create the professionals of tomorrow who understand both AI operations and its entire impact.

REFERENCES

Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). *AI literacy in K–12: A systematic literature review*. *International Journal of STEM Education*, 10(29). <https://doi.org/10.1186/s40594-023-00418-7>

Colorado Education Initiative. (2025, August). *Artificial Intelligence (AI) K–12 Skills Progression Guide for Educators*. Future-Ready Colorado. Retrieved from https://www.coloradoedinitiative.org/wp-content/uploads/2025/08/Future-Ready-Colorado_Artificial-Intelligence-AI-K-12-Skills-Progression-Guide-for-Educators.pdf

Computing At School. (2025, June). *10 practical activities to embed AI literacy in your school*. Retrieved from <https://wwwcomputingatschool.org.uk/resources/2025/june/10-practical-activities-to-embed-ai-literacy-in-your-school/>

Digital Promise. (2024, February 21). *Revealing an AI literacy framework for learners and educators*. Retrieved from <https://digitalpromise.org/2024/02/21/revealing-an-ai-literacy-framework-for-learners-and-educators/>

Digital Promise. (2024, June). *AI Literacy: A framework to understand, evaluate, and use emerging technology*. Retrieved from <https://digitalpromise.org/2024/06/18/ai-literacy-a-framework-to-understand-evaluate-and-use-emerging-technology/>

European Commission & OECD. (2025). *Empowering learners for the age of AI: AI Literacy Framework (Review Draft)*. https://ailiteracyframework.org/wp-content/uploads/2025/05/AILitFramework_ReviewDraft.pdf

European Commission & OECD. (2025, May). *Empowering learners for the age of AI: An AI Literacy Framework for Primary and Secondary Education (Review Draft)*. https://ailiteracyframework.org/wp-content/uploads/2025/05/AILitFramework_ReviewDraft.pdf

Green, M. (2025, November 5). *GenAI use and ethics framework: A pedagogical model for responsible AI integration in K–12 and higher education*. OLC Insights. Online Learning Consortium. Retrieved from <https://onlinelearningconsortium.org/olc-insights/2025/11/genai-use-and-ethics-framework/>

Human-Centered AI Guidance for K–12 Public Schools: Ethical considerations for AI (2024, July). Office of the Superintendent of Public Instruction, Washington State. https://ospi.k12.wa.us/ai-guidance_ethics.pdf

Kharbach, M. (2025, July 23). 7 classroom activities to build critical AI literacy. *Educators Technology*. Retrieved from <https://www.educatorstechnology.com/2025/07/7-classroom-activities-to-build-critical-ai-literacy.html>

Lee, K.-w., Mills, K., Ruiz, P., Coenraad, M., Fusco, J., Roschelle, J., & Weisgrau, J. (2024, June 18). *AI literacy: A framework to understand, evaluate, and use emerging technology*. Digital Promise. Retrieved from <https://digitalpromise.org/2024/06/18/ai-literacy-a-framework-to-understand-evaluate-and-use-emerging-technology/>

Long, D., & Magerko, B. (2020). What is AI literacy? *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, 1–16. <https://doi.org/10.1145/3313831.3376727>

Luckin, R. (2024). Re-thinking AI in education: From tools to transformative understanding. *AI and Ethics*, 4, 1221–1233. <https://doi.org/10.1007/s43681-024-00370-9>

Lynch, M., Greenhow, C., & Gleason, B. (2024). Teachers and artificial intelligence: Opportunities, concerns, and implications for practice. *Learning, Media and Technology*. <https://doi.org/10.1080/17439884.2024.2410278>

Markauskaite, L., & Goodyear, P. (2024). Understanding human–AI collaboration as epistemic activity in education. *British Journal of Educational Technology*, 55(1), 45–61. <https://doi.org/10.1111/bjet.13381>

Mills, K., Ruiz, P., Lee, K., Coenraad, M., Fusco, J., Roschelle, J., & Weisgrau, J. (2024, May). *AI Literacy: A framework to understand, evaluate, and use emerging technology*. Digital Promise. <https://files.eric.ed.gov/fulltext/ED671235.pdf>

National AI Literacy Day. (2025). *Resources*. Retrieved from <https://www.ailiteracyday.org/resources>

Ng, R., & Luan, H. (2023). Artificial intelligence literacy in K–12 education: A framework and systematic review. *Computers & Education*, 200, 104786. <https://doi.org/10.1016/j.compedu.2023.104786>

Ramazanoglu, M., & Akin, T. (2024). AI readiness scale for teachers: Development and validation. *Education and Information Technologies*, 30, 6869–6897. <https://doi.org/10.1007/s10639-024-13087-y>

Stanford Teaching Commons. (n.d.). *Understanding AI literacy*. Retrieved from <https://teachingcommons.stanford.edu/teaching-guides/artificial-intelligence-teaching-guide/understanding-ai-literacy>

Tenberga, I., & Daniela, L. (2024). Artificial intelligence literacy competencies for teachers through self-assessment tools. *Sustainability*, 16(23), 10386. <https://doi.org/10.3390/su162310386>

AI literacy serves as an educational method to teach critical thinking skills because automation performs many tasks in our present era. That's the job. That's the opportunity.

UNESCO. (2023). *Guidance for generative AI in education and research*. UNESCO Publishing. <https://unesdoc.unesco.org/ark:/48223/pf0000395864>

WeAreTeachers Staff. (2025, May 12). *AI literacy guide: How to teach it, plus resources to help*. WeAreTeachers. Retrieved from <https://www.weareteachers.com/ai-literacy-guide/>

Yang, H., & Capan, S. (2025, April). *Promoting AI literacy in K–12: Components, challenges, and opportunities*. SRI International. Retrieved from https://www.sri.com/wp-content/uploads/2025/04/CIGALE_ExpertReviewReport_Acc.pdf

Zhou, X., Li, Y., Chai, C. S., & Chiu, T. K. F. (2025). Defining, enhancing, and assessing artificial intelligence literacy and competency in K–12 education: A systematic review. *Interactive Learning Environments*. <https://doi.org/10.1080/10494820.2025.248753>