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ABSTRACT 

A transition to a circular economy will imply new methods, accompanied by the introduction of sustainable 
materials and service-based functions into industries. However, effectively integrating bio-waste-based 
materials into modular product systems remains challenging due to trade-offs between cost, durability, and 
operational efficiency. An optimization version of the so-called Modular Product-Service Systems (MPSS) has 
been developed in the paper to replace the circular bio-waste materials so as to achieve the goal of the 
environmentally-sustainable operation and efficiency. It is stated that the modularity principles of products 
and prospects of regeneration of bio- waste resources facilitate the low value of lifecycle and environmental 
failure and high share of resource circularity, flexibility of the service, and reusability of components. 
Considering degradation rates, service schedules, and logistical capacities, a Mixed- Integer Linear 
Programming (MILP) model is designed to optimize the selection, allocation, and maintenance of bio-waste-
based product modules. In an attempt to solve the conflicting goals, the framework incorporates both Life 
Cycle Assessment (LCA) and Multi-Criteria Decision-Making (MCDM) on the basis of the Technique of Order 
Preference by Similarity to Ideal Solution (TOPSIS). This form of integrated approach is capable of providing 
informed evaluation of trade-offs among economic, ecological and operational standards. The applicability of 
the model will be realized with aid of a case study in the modular furniture sector that lower the cost of 
furniture materials using farming bio-wastes without compromising on the furniture durability and 
functionality in terms of numbers of years of service. The case study results demonstrate that the proposed 
MPSS framework achieves superior financial returns (ROI 175%, breakeven by Year 6), extended service life 
(7.5 years), and higher circularity (65%) compared to benchmark methods, while balancing cost–carbon trade-
offs through integrated LCA– MCDM evaluation. These outcomes confirm its effectiveness in delivering 
economically viable, environmentally sustainable, and operationally flexible solutions for circular 

KEYWORDS: Circular Economy, Modular Product-Service Systems, Bio-Waste Materials, Mixed-Integer 
Linear Programming, Multi-Criteria Decision-Making. 
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1. INTRODUCTION 

Development towards a circular economy has 
gained significant momentum in the industrial 
sector, as highlighted, on the wave of attempts to 
achieve sustainable development (Lee & Hsu, 2025). 
Linear production models which were traditionally 
based on the take–make–dispose model are no longer 
possible as the natural sources are getting depleted 
faster and the environmental pollution is on the rise, 
as noted by (khaenamkhaew, 2025). The concept of 
circular economy enhances resource efficiency by 
reusing, recycling, and regenerating (i.e., closing and 
creating loops) with material as a result of which the 
waste volume decreases and environment becomes 
less damaged (Gong et al., 2025). As organizations 
look forward to balance the goals of economic 
growth with environmental stewardship, more and 
more attention is being paid to the redesign of 
product design and business models that aim to 
introduce a sustainability element in them at an early 
stage (Huang et al., 2024). This change is forcing 
manufacturers to innovate both in their choice of 
materials as well as in service delivery, lifecycle 
management and in their delivery activity (Liu et al., 
2023). 

It is the emergence of MPSS as a potential 
transition strategy in this sustainable transition 
(Yang et al., 2023). The modular product 
architectures supplemented and enhanced by 
service-based models are incorporated with MPSS, 
allowing the products to be designed on the sets of 
modular architecture and interchangeable modules 
(Mestre & Cooper, 2017). This modularity increases 
flexibility, easier maintenance and upgrades and 
accommodates reusability and remanufacturing of 
parts (Emec et al., 2015). Most importantly, MPSS, 
when integrated into the context of circular 
economies, will enable the replacement of frequently 
non-renewable resources that are used with more 
sustainable raw materials, including circular bio-
waste (Fratini et al., 2019). The bio-waste materials: 
farm waste materials, bio-products: They provide a 
resource which is renewable and abundant and can 
help to decrease the use of virgin materials as well as 
to lower environmental impact (Hazen et al., 2022). 
Service models linked to MPSS extend product 
lifespans and shift the focus toward performance, 
creating new value streams that promote responsible 
consumption (Kopnina, 2019). Nonetheless, the use 
of bio-waste materials in the implementation of 
MPSS possesses complexities of the module 
degradation scheduling of function and recognition 
of supply chain that should be carefully handled in 
order to support the feasibility and effectiveness of 

the system (Glavic et al., 2020). 
With this understanding of issues, this paper is 

going to propose an integrated optimization model 
that can assist in decision-making to develop and 
operate MPSS using circular bio-waste materials. 
Raising the essence of this framework lies a MILP 
model that optimizes bio-waste-derived product 
modules and selection, assignment, and support to 
adaptive operations-based confinements like 
reduction rates, maintenance schedules, and 
logistical capacities. The model is combined with a 
MCDM strategy that is founded on the TOPSIS in 
order to reconcile the interfering economic, 
environmental, and operational goals. Such a holistic 
approach will allow the stakeholders to trade-offs as 
well as prioritize the best solutions with a maximum 
focus on sustainability without compromising 
service performances. 

To illustrate the proposed structure, the authors 
use a practical example in the development of 
modular furniture where in its development, 
agricultural bio-waste materials have been used to 
substitute the traditional inputs with no subtraction 
to the indicated durability and service life. The 
obtained results indicate a significant promise that 
materials costs and carbon emissions may be reduced 
without sacrificing service levels. Besides, sensitivity 
analyses illustrate the levels at which changes in the 
supply chains performance and the customers 
demand impacts the effectiveness of the systems 
highlighting the flexibility and strength of the 
introduced model to dynamic environments. This 
study, by combining modular design principles, 
circular integration of bio-materials and better 
optimization methods, presents an entirely 
integrated decision-support tool aiding in 
sustainable manufacturing and service systems, 
long-term creation of environmental and economic 
values. 

2. RELATED WORKS 

In recent research, circular economy principles 
have been more frequently combined with modular 
product-service systems and material substitution 
through sustainable materials, especially bio-waste 
as renewable material. MILP is one and MCDM 
methods like TOPSIS are the other optimization 
methods which were used extensively to reconcile 
economic, environmental and operation targets. The 
previous literature reveals that modularity provides 
flexibility and resource-efficiency as well as the 
potential reduction in environmental impact due to 
bio-waste. Nevertheless, most of the current 
strategies do not exhibit a holistic approach to the 
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cumulative aspects of degradation of material, 
scheduling of service, and logistics at a supply chain 
level. The table 1 below shows major contributions 
about literature, their methods of accomplishment, 

benefits, and shortcomings giving an idea about the 
presented comprehensive optimization model in this 
of work. 

Table 1: Comparative Analysis of Existing Approaches in Circular Economy and Modular Product-Service 
Systems. 

No. Authors Techniques Advantages Disadvantages 

1 
Lee and Hsu 

(2025) 
Smart customization, 

TQM 
Improved quality, 

sustainability 
Complex 

customization 

2 khaenamkhaew (2025) 
Circular economy 

framework 
Comprehensive sustainability overview 

Conceptual, lacks 
modeling 

3 Gong et al. (2025) 
AI-based industrial 

ecology 
AI-driven resource optimization Integration complexity 

4 Huang et al. (2024) 
Energy harvesting 

technology 
Efficient kinetic energy capture 

Focused on energy 
systems 

5 Liu et al. (2023) 
System mapping, 
interdependency 

Supports local waste planning 
Specific to municipal 

waste 

Lee and Hsu (2025) suggested a medium of both 
smart customization and Total Quality Management 
(TQM) to improve upon green innovations to the 
production of pellets of wood and design of 
furniture. Their production is aimed at enhancing the 
quality of products, making them sustainable, and 
customizing the modular furniture components, yet 
there is a problem with the complexity of 
implementation. The paper proves the possibilities of 
combining the quality control with the transition to 
circular materials but fails to consider big-scale 
supply chains interactions. 

khaenamkhaew (2025) explored the major 
premise of a circular and sustainable economy, the 
importance of responsible management of resources 
and conservation of the environment. The provided 
study offers a full conceptual framework and no 
depth on specific models of operations or 
quantitative studies. Although it forms the basis of 
sustainability thought, it does not provide much on 
how it should be applied in practice in industrial 
situations. 

Gong et al. (2025) discussed the relationship 
between industrial ecology and artificial intelligence 
and suggested the concepts of AI-based optimization 
of resource productivity and sustainability. Though 
they provide innovative solutions, the practice 
presents major integration complexities. Their 
contributions open the door to smart decision-
making and require modification to particular 
modular product-service systems. 

Huang et al. (2024) implemented a three-layered 
energy harvesting device capable of capturing 
ejected energy and reusing it efficiently through all 
electromagnetic, triboelectricity, and piezoelectric 
effects. Even though they are applied to energy 

systems, the technology exhibits potential to make 
sustainability increase in other areas. Nevertheless, it 
has a narrow applicability when it comes to 
optimization of products-services. 

In mapping the interdependencies locally, Liu et 
al. (2023) studied system transitions in municipal 
solid waste infrastructure. Their model facilitates 
better decision-making based on waste management, 
but may only apply to municipal systems and is 
unlikely to be directly applicable to the framework of 
industrial products and services. However, what 
comes out in their approach is the significance of 
comprehending complex system interactions during 
the transition to the circular economy. 

In accordance with the limitations described in the 
available literature, it can be said that although a 
number of studies have made important 
contributions dedicated to modularity, 
sustainability, and the principles of circular 
economy, the lack of an integrative, practical model 
capable of addressing the technical, logistical, and 
economic complexities involved in the real-world 
implementation of Bio-waste-based MPSS remains a 
significant gap (Hazen et al., 2022). The notable gaps 
are a deficiency of quantitative optimization tools to 
deal with module degradation, service planning and 
logistic constrains as well as weakness in the ability 
to conduct trade-offs between the economic, 
environmental and operations goals (Leite et al., 
2021). With the goal to overcome such gaps, the 
proposed structure adds a MILP model which is 
combined with MCDM through TOPSIS, designed 
specifically to optimally design and operate MPSS 
using circular bio-waste materials. This method 
allows conducting a systematic analysis of 
contradictory goals and contributes to data-driven 
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decision-making therefore avoiding the weaknesses 
of such prior works in terms of conceptual, 
contextual, and integration weaknesses (Barkhausen, 
2024). 

3. SUSTAINABLE DEPLOYMENT 
FRAMEWORK 

The system model postulated to integrate bio-
waste into sustainable MPSS takes a stepwise 
approach, which is however, interwoven to five 
steps. It starts with modular design and integration 
of bio-waste materials where the components of the 
products are re-engineered into standard modules 
consisting of environmentally friendly material 
based on agricultural and industrial bio-waste (e.g., 
rice husks, sawdust, coconut coir). The modularity 
helps in supporting circularity, enhances reusability 

and it offers flexibility in context of customization. 
After these modules are designed, the optimization 
of these modules using MILP is the next stage 
because it is going to select, assign these modules to 
each other and schedule them to optimize the 
lifecycle cost, and ensure that it considers 
degradation, maintenance requirements and 
constraints in terms of logistics. Quantification of the 
environmental performance of the system is then 
carried out to check the validity of the system after 
optimization through LCA. This has made it 
impossible to use any chance of the inclusion of the 
bio-waste material and the modular trend to cause 
environmental burdens at any point of the product 
lifecycle, i.e. materials sourcing of the raw materials 
of the products up to disposing it. The figure 1 shows 
the proposed system architecture. 

 
Figure 1: Proposed System Architecture. 

Upon determining environmental sustainability, 
framework uses MCDM in form of TOPSIS method 
to solve trade-offs between economic, 
environmental, and operational objectives. In 
calculating the relative proximity of options relative 
to an ideal solution, the decision-makers can weigh 
options based on configurations that are more 
balanced, as well as sustainable. Lastly, the model is 
also tested on a real-world example in the modular 
furniture business where practical usage is 
performed and sensitivity analysis carried out. Such 
simulations question the capacity of the system to 

respond to dynamic changing customer demand, 
supply chain and fluctuations in materials. The 
lessons of this review affirm that the MPSS 
framework is bendable, scalable and able to generate 
a sustainable value-creation in various industries. 
The fact that the concept of the use of modularity, 
bio-based material, optimization modelling, 
environmental accounting and also decision analysis 
collectively form a cohesive framework is an example 
of a mechanically disciplined and feasible roadmap 
to the implementation of circular economy in 
engineering and other manufacturing systems. 
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3.1. Modular Design and Bio-Waste Material 
Integration 

The first component in the suggested system is the 
design of modular product parts with the use of 
environmentally sustainable bio-waste. Modular 
design can be defined as the ability to break a product 
into small and smaller, standardized, and 
functionally separate units design to facilitate 
assembly, disassembly, repairing, and replacement 
of components. It is a circular approach that 
promotes the value of the product in terms of its 
service life and facilitates efficient reuse and 
recycling. Conventional raw materials are also 
replaced with bio-waste-based materials (rice husks, 
coconut coir, or sawdust) to fit into the sustainability 
idea towards the environment. Such materials are 
chosen depending on their durability (mechanical 
strength), their environmental friendliness, 
accessibility and economic feasibility. This sort of 
modular design helps the manufacturers to react 
more elastically to different customer demands, and 
decreasing environmental harm that comes with a 
linear establishment of production (Alejandre et al., 
2022). A metric called Material Integration Efficiency 
(MIE) is presented to illustrate the advantageousness 
of bio-waste materials to be used in modular 
integration. This indicator looks at the structural 
performance and circularity contribution of the 
material and expressed in equation (1) below, 

𝑀�𝐼�𝐸�𝑖� = 𝛼�.𝑆�𝑖�+𝛽�𝐶�𝑖� 
 �������𝐶�𝑚�𝑎�𝑥� 
𝑀�𝐼�𝐸�𝑖�: Material Integration Efficiency of module 

𝑖�, 𝑆�𝑖�: Structural performance score (e.g., tensile 
strength, durability), 𝐶�𝑖�: Circularity contribution 
(percentage of recycled or renewable content), 
𝐶�𝑚�𝑎�𝑥� : Maximum possible circularity score for 
normalization, 

𝛼�, 𝛽� : Weighting factors (e.g., 𝛼�=0.6, β=0.4) 
representing the relative importance of 

structural and environmental factors. This 
formula ensures a balanced evaluation of both 
performance and sustainability, guiding the optimal 
selection of bio-waste materials for modular product 
development (Hobson, 2020). 

3.2. Lifecycle and Service Optimization through 
MILP Modelling 

In the second step of the suggested system, the 
Mixed-Integer Linear Programming (MILP) model 
will be introduced which is to optimize three 
following aspects: the choice of the bio-waste-based 
product modules, the distribution of these modules 
among the service points, and the maintenance 
schedule of the discussed modules (Tomic´ & 

Schneider, 2017). This optimization is done to ensure 
system efficiency when subjected to real-world 
constraints like the degradation rates of bio-based 
materials (they degrade faster than synthetic 
alternatives), the frequency of maintenance 
operation calculated based on its service load and the 
logistical limitation such as transportation and 
storage capacity (Xu et al., 2024). The most important 
task of the MILP model is to minimize the total 
lifecycle cost (TLC), maximize the operation 
reliability, and maximize the possibility to recycle the 
components. The MILP model objective function 
may be written as equation (2), 

 
Here, 𝑀� is defined as the number od module 

types, 𝑇� is defined as time periods in the planning 
horizon, 𝑙�𝑖�,𝑡� is defined as the logistics usage for 
module i, 𝑚�𝑖�,𝑡� is defined as the maintenance activity 
indicator for module i, 𝑥�𝑖�,𝑡� is defined as the binary 
for 

selecting module i at time t, 𝐶�𝑙�𝑜�𝑔�, 𝐶�𝑚�𝑎�𝑖�𝑛�𝑡�, 
𝐶�𝑖�𝑛�𝑠�𝑡�𝑎�𝑙�𝑙� are defined as the cost coefficients for 

𝑖� 𝑖� 𝑖� 
  
installation, maintenance and logistics. This 

equation reflects the system’s intent to minimize total 
costs while managing lifecycle constraints, ensuring 
modular services remain both economically and 
environmentally sustainable throughout their 
operational life (So ̈nnichsen et al., 2025). 

3.3. Evaluation Using Life Cycle Assessment 
(LCA) 

Reproductive LCA to check and justify 
environmental sustainability of integrating bio-waste 
materials with use of modular product-service 
systems forms the third proposal of the system 
framework (Florin et al., 2015). LCA is a scientific 
standardized system internationally (ISO 
14040/14044) which determines the effects produced 
on the environment by a product or a system paying 
attention to the entire life time of a product or system 
(raw material extraction / cradle / to manufacturing, 
distributing, using and disposing / grave). Here, 
LCA would be necessary to help arrive at the positive 
conclusion regarding the purpose of substituting 
traditional raw materials with bio-waste derivatives 
leading towards the existence of net environmental 
impacts abatement (Maaßen & Urbano, 2024). It 
assists in the identification of any ecological trade-
offs that might develop as a result of the processing 
of bio-waste increased energy requirements or use of 
chemicals in pre-treatments) that might exist. LCA is 
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subdivided into four very important processes: 

 Goal and Scope Definition – This phase 
establishes the purpose of the LCA (e.g., 
comparing bio-waste-based modules vs. 
conventional ones) and sets system boundaries 
(e.g., cradle-to-gate, cradle-to-grave). 

 Life Cycle Inventory (LCI) – This involves 
collecting quantitative data on material inputs 
(e.g., rice husks, adhesives), energy 
consumption, water usage, transportation, and 
emissions (e.g., CO₂, CH₂, NOx) throughout 
each stage of the module’s lifecycle. 

 Life Cycle Impact Assessment (LCIA) – The 
collected data is translated into impact 
categories using established models. Common 
indicators include Global Warming Potential 
(GWP), Eutrophication Potential, Ozone 
Depletion, Acidification, Human Toxicity, and 
Water Footprint. 

 Interpretation – Results are analyzed to 
identify environmental "hotspots" and make 
informed decisions to minimize impacts. For 
instance, if drying coconut coir is found to be 
energy-intensive, alternative processing 
methods or renewable energy sources may be 
considered. 

This step is essential to move environmental 
sustainability from theory to measurable and 
practical application. It also allows comparison of 
design options to be compared, trade-offs to be 
analyzed between ecological costs, cost and 
operational performance (Alqassimi, 2025). 
Combining LCA and the previous MILP model, the 
decision is made more comprehensive, which means 
that an engineer and industry manager can consider 
both environment-related and logistical and 
economical goals. Finally, this move validates the 
importance of employing bio-waste materials in 
reinforcing a circular economy structure, and 
without recycling substances that create other 
unintended demands on the environment (Sehnem et 
al., 2023). 

3.4. Decision Prioritization via Multi-Criteria 
Decision-Making (MCDM) 

The fourth step in the above framework is to 
utilize an MCDM framework to manage the various 
and in many cases, conflicting goals of cost 
minimization, environmental impact reduction, and 
service performance maximization (Lit et al., 2024). 
Trade-offs are common in sustainable product-
service systems, such that a designing option with 
cheap material can lead to large carbon footprint, 
whereas one that has a high level of recycling can be 

associated with high logistics-related costs (Henry et 
al., 2020). The complexities are not captured in a 
traditional single-objective model hence the necessity 
of MCDM to make balanced decision in a 
multidimensional environment. The choice of the 
TOPSIS is based on its effectiveness and simple 
addiction to the quantitative models used in this 
study. TOPSIS measures the alternatives with respect 
to a geometric proximity to an ideal solution (the best 
marks in all criteria) and the greatest distance to a 
negative-ideal solution (the worst marks). Both the 
normalization of decision matrix and the weightage 
of each criterion is done after which the relative 
closeness coefficient 𝐶�∗ of each alternative 𝑖� is 
determined as equation (3), 

 
Where: 𝐷�+ Euclidean distance of alternative 𝑖� 

from the ideal solution, 𝐷�−: Euclidean 𝑖� 𝑖� distance 
of alternative 𝑖� from the negative-ideal solution, 𝐶�∗: 
Relative closeness to the ideal solution (0 ≤ 𝐶�∗ ≤ 1). A 
higher 𝐶�∗ indicates that the alternative is closer to the 
𝑖� 𝑖� ideal solution and is therefore more 
preferred. By ranking alternatives based on 𝐶�∗, 
decision-makers can identify the most balanced 
option across economic, ecological, and operational 
dimensions. This ensures that strategic decisions—
such as material substitution, module configuration, 
or service model selection—are grounded in a 
transparent, quantifiable, and sustainability-oriented 
process (Baldassarre & Calabretta, 2024). 

3.5. Implementation and Sensitivity Analysis in 
a Real-World Case 

Real-life experiment and validation of the MPSS 
model in the furniture industry, specifically within 
the field of modular furniture will be the last practical 
step of the proposed framework and this is in the 
form of an experimental evaluation of the proposed 
model potential in regards to its viability as well as 
performance (Van Opstal & Borms, 2023). In such 
application, bio-waste products like rice husk 
composites, sawdust boards and coconut coir panels 
are used to create modular furniture parts, e.g. 
panels, support, and connectors. The modular design 
is subject to mass customization, easier maintenance 
and easy disassembly to be recycled or used again 
(Bauwens et al., 2024). The realization not only 
proves that these bio-waste alternatives have the 
potential to reach structural and aesthetic 
expectations but also proves that in terms of material 
savings and the carbon impact, concrete gains are 
made without damaging the operation or consumer 
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satisfaction of the products (Zucchella et al., 2022). 
To evaluate how efficient and adjustable the 

model is in a dynamic environment, sensitivity 
analysis is drawn to essential parameters including 
the efficiency of the supply chain, material 
availability, customer volatile demand, and 
maintenance rate. Such simulations consider the 
impact of very small changes in those parameters to 
the general system performance of cost, continuity of 
service, and environmental performance. These may 
be late deliveries of bio-waste, changes in consumer 
taste preference or greater rates of degradation. Such 
analysis shows that the MPSS model is highly 
resilient, which is attributed to its modularity, service 
flexibilities, and optimization of decisions present 
within its design. These results indicate that the 
presented framework can become scalable; however, 
it can also be transferred to other manufacturing 
industries (e.g., consumer electronics, packaging, or 
construction materials) that find themselves 
planning to consider the circular economy concept 
and the establishment of sustainable services 
approaches (Sahabuddin et al., 2023). 

4. RESULTS 

In this section, a discussion and analysis of the 
findings of the proposed five steps model of the 
modular system that focuses on integration of bio-
waste into the product- service system to enhance 
sustainability are presented. The ability of each 
module of the framework which include modular 
design, optimization based on MILP, life cycle 
analysis and prioritization of the decision has been 
implemented and tested in a real- life case study in 
the modular furniture business. The results are used 
to determine the effects of the system on the 
environment, economy as well as it operations. 
Sensitivity analyses were further carried out as an 
effort to know how robust the model was in different 
situations of demand and supply. The discussion will 
give information on the effectiveness of the model, 
practicality, and flexibility of the model to other 
industries and especially in industries with interests 
in circular and sustainable production strategies. 

4.1. Dataset Description 

The dataset integrates economic, operational, and 
environmental indicators to provide a 
comprehensive foundation for evaluating and 
comparing the Proposed, GA, LP, and RBES 
approaches while contextualizing circular economy 
interventions in India’s agricultural sector. From an 
economic perspective, it records an initial investment 
of 100,000 rupees, yearly and cumulative discounted 

cash flows, lifecycle costs across five demand 
scenarios (S1–S5), and annualized Net Present Values 
(NPV) projected over a ten-year horizon (Kaggle, 
2025). The operational indicators capture demand 
levels ranging between 1,100 and 1,150 tons, product 
service lives of 6.0–7.5 years depending on the 
method, circularity ratios from 35% to 65%, solver 
times between 180 and 450 seconds, and an 
operational flexibility index spanning 0.50–0.85. 
Complementing these are state-wise agricultural bio-
waste records that include data on livestock residues, 
crop byproducts, and other organic wastes, with 
seasonal variations providing insight into regional 
differences and waste management challenges. The 
environmental indicators encompass scenario-based 
carbon emissions, ranging from 18.0–22.0 kg CO₂ eq 
under material cost scenarios and 18,800–20,000 kg 
CO₂ eq for operational strategies, along with 
method-specific carbon footprints between 12,000 
and 22,000 kg CO₂ eq. Together, these 
multidimensional data points support the MILP 
optimization model and the integrated LCA–MCDM 
(TOPSIS) framework, enabling a holistic assessment 
of economic viability, operational efficiency, and 
ecological sustainability while offering actionable 
insights into agricultural waste utilization and 
resource-efficient decision-making (dataset, 2025). 

The figure 2 provides a cumulative discounted 
cash flow (in rupees) of four approaches: Proposed, 
GA, LP and RBES on an initial investment 100-
thousand rupees in Year 0. The Proposed model 
shows the highest financial performance paying back 
by the 6th year and touching about 76,000 at Year 10 
demonstrating the highest ROI. In comparison, the 
GA model will have a payback in Year 7 with a final 
amount returned approximately at 48, 000 and the LP 
model will have a break in year 8 and the amount 
returned will be approximately 30, 000. RBES model 
is way behind with the payback coming only in Year 
9 with maximum cumulative cash flow of only 18000 
rupees. This comparative analysis reaffirms the 
higher economic feasibility and the quicker speed of 
recovery of Proposed model in sustainable system 
deployment. 

Figure 3 shows how the total lifecycle costs (in 
1,000) can change with the different effect of demand 
(S1 to S5), and reflects how economics of a system is 
sensitive in terms of market demand. Due to the 
increase in the demand within all the Scenarios S1 to 
S5, the total lifecycle cost also increases in a linear 
manner with an initial value of 80k in the Scenario S1 
and a final value of 130k in Scenario S5. In particular, 
the cost rises to 90k in S2, 100k in S3, 115k in S4 and 
culminates at 130k in S5. The given tendency 
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highlights the direct relation of the increased demand 
and operational spending that probably can be 
explained by more materials use, logistics 
complexity, and energy demands. This kind of 

analysis underlines the significance of scalable and 
revenue-flexible design of an environment of 
sustainable manufacturing. 

 
Figure 2: Cumulative Discounted Cash Flow. 

 
Figure 3: Demand Scenario Based Total Lifecycle Cost. 

The figure 4 demonstrates the connecting lines 
between material cost scenarios (S1 to S5) and linked 
carbon emissions (in kg CO 2 eq). There is an 
apparent growth tendency in which the cost of 
materials increases and subsequently carbon 
emissions increase. The amount of emissions in 
Scenario S1 is minimal and amounts only to 18.0 kg 
CO2 eq, thus having minimal environmental effect. 
This creeps up to 18.5 kg CO 2 eq in S2, 19.0 kg CO 2 
eq in S3 and then rises faster to 20.0 kg CO 2 eq in S4. 
S5 with an emission of 22.0kgCO 2 eq. is the highest. 
The trend implies that cheaper materials are 
probably composed of sustainable or bio-waste, and 
thus lower the carbon emissions, whereas more 
expensive materials have a higher impact on the 
environmental degradation. It is noted in the analysis 
that cost efficient and environmentally sensitive 
material choices should be considered to ensure the 

physical and capital sustainability. 
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Figure 4: Material Cost Scenario. 

Figure 5 shows the comparison of the four 
approaches, Proposed, Traditional LP, GA (Genetic 
Algorithm) and RBES (Rule-Based Expert System) 
with regard to service life (in years) and circularity 
ratio (in %). The Proposed method is better than all 

other methods due to the service life of 7.5 years and 
the highest ratio of circularity at the level of 65 
percent after that meaning that it will remain viable 
for a long and will have little impact on the 
environment. The Traditional LP approach indicates 
service life of 

7.0 years, which is slightly lower than the 
proposed, not to mention the extremely low 
circularity ratio of 40 percent, which indicates poor 
reuse or recyclability of the materials. The method 
based on the GA provides a weak balance between 
the durability and sustainability as the GA method 
offers 6.8 years of service life and supports 58 % of 
the circularity ratio. In the meantime, RBES has the 
shortest service life (6.0 years), as well as the lowest 
circularity ratio (35%) and highlights how inefficient 
it is in both of these facets. All in all, the Proposed 
model is the most viable in terms of not only 
providing a longer lifespan of its operation but also 
contributing greatly to the idea of the circular 
economy because of the increased capability of 
recycling and the shortened amount of trash. 

 
Figure 5: Service Life Validation. 

The figure 6 shows the comparative result of four 
methods- Proposed, Traditional LP, GA, and RBES 
based on cost reduction (%) and carbon footprint (kg 
CO 2 ). The Proposed approach offers the highest cost 
savings in the proportion of 18.5%, but the carbon 
footprint comes with a figure of 22,000 kg CO 2 eq, 
where a trade relate is between cost savings earned 
to the environmental impact. Compared to the GA-
based optimization the cost savings of 15.7%, which 
is respectable, however even here a lower more 

balanced carbon footprint of 19,800 kg CO 2 eq is 
produced. Conventional LP realizes an intermediate 
10.2 percent decrease in expenses, whereas RBES 
raises the lowest decrease to 8.3 percent, but the most 
favorable environmental impact with only 12,000 kg 
CO 2 eq, an indicator of intense ecological efficiency 
but low economic opportunity. The Proposed 
method is economically superior, however, could be 
mitigation-based in terms of more significant 
environmental impact compared to other methods. 
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Figure 6: Cost Reduction Evaluation. 

Figure 7 is a comparison of Operational Flexibility 
Index (blue bars) and Solver Time in seconds (red 
line) in dual axis of comparing four methods: 
Proposed, Traditional LP, GA and RBES. The 
Proposed model has the best flexibility index as 0.85 
which shows maximum adaptability, and also the 
solver run time is reasonable as 320 sec. GA method 
is next with a flexibility index of 0.75, however, it had 
the longest solver time of 450 seconds which is an 
indication that it is computationally inefficient. 
Conventional LP presents a moderate flexibility 

index of 0.60 and an increased solver time of 250 
seconds that is not adaptive but balances flexibility 
and calculations time. RBES which takes the fastest 
time of 180 seconds (solver) has a flexibility index of 
0.50 which shows that it has a low flexibility in its 
operation. In sum, the Proposed system offers the 
most adequate performance, solving the problem of 
maximum flexibility with reasonable undesirable 
computational effort, which makes it the most 
successful regarding the other analysed methods. 

 
Figure 7: Operational Flexibility Index. 

Figure 8 shows that the Return on Investment 
(ROI) is compared among four methods of 
optimization including Proposed, GA (Zhu et al., 
2025), LP (Islam et al., 2020), and RBES (Talebi et al., 
2025). The projected model is simply the best as the 
ROI is highest (175 %) as compared to the others 
implying that Proposed method is financially very 
efficient and the preferred option having high 
returns in a monetary sense. GA approach comes 
next with ROI being 125 percent with moderate 
profitability nonetheless much lower compared with 

Proposed model. An LP strategy would provide a 
base ROI of 100 percent which means that the ROI 
would just break even and would gain whatever 
would be earned. By contrast, RBES has the lowest 
ROI of 80% indicating poor investment returns and 
hence financial risk. In general, the Proposed method 
offers the most favourable cost-effectiveness ratio 
which confirms its efficiency in the delivery of 
maximum economic benefits among all of the 
optimization strategies explored. 
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Figure 8: ROI Evaluation. 

Figure 9 shows the development of the Net 
Present Value (NPV) during an investment of 10 
years. At the start of the project, we have a negative 
cash flow of 100,000 in year 0 which is the capital 
investment that is made at the beginning of the 
project. After that, NPV continues to improve with 
each year: 0 year: 0. NPV(0) is 0, 1 year: 86,111. 
NPV(1) is 86,111, 2 years: 70,679. NPV(2) is 70,679 
and keep on improving through 54,802, 38,631, 
21,617 till the 5th Year. An important event occurs 

also in year 6, whereby NPV reading cuts the break-
even position to become positive in the year 6 i.e. at a 
level of 14,602 and rising further in year 7 to 11,735, 
year 8 to 27,402, year 9 to 42,410 and in year 10 to 
56,769. The above positivity can be attributed to high 
financial viability that points to the fact that the 
investment not only pays within the first 6 years, but 
also provides high returns over the following years. 
The graph justifies that the project is economically 
viable and is efficient in creating a long-term value. 

 
Figure 9: Net Present Value. 

The figure 10 shows the range of Demand (tons), 
Cost (paisa), Emission (kg CO2), given five different 
operational considerations (S1 to S5) under which 
tactical or environmental scenario is experienced at a 
time. First, in the Baseline Scenario (S1), describing 
the status quo in terms of current operations without 
optimization, the demand is approximately 1,100 
tons, the cost is 50,000(Rs), and the emissions are 
20,000(kg CO2). Regarding the High Demand 
Scenario (S2), which is preconditioned by the 
seasonal boosts of the customer orders, the demand 

is slightly larger (1,150 tons) and the cost almost 
increases (to nearly 52,500) and emissions decrease 
(to 19,200 kg CO2), which indicates higher efficiency 
despite the elevated activity. In the case of Scenario 
S3 (Raw Material Price Increase), with a 10--15% 
increase in the wood/ transportation expenditure, 
cost and demand remain high at 1,120 tons and 
51,000-19,600kg CO2 are reversed. Similarly in 
Scenario S4 (Carbon Tax Introduced), the penalty on 
emissions comes in so the cost raises up to almost 
53,000 because of taxes, the emissions decrease 
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substantially to 18,800 kg CO2 and the demand stays the same. 

 
Figure 10: Scenario Based Evaluation. 

Lastly, there is the Circular Economy Strategy (S5) 
which is remarkable in that even though the cost 
reduces by a small margin to 52,500, the emission 
level will be at its stable level of 19,100 kg CO2 and 
the demand will not be affected showing the 
contribution of reuse and recycling as a medium of 
balancing the environmental and economic 
performance. On the whole, the figure demonstrates 
that strategic interventions, especially those 
including sustainability (S4 and S5), are capable of 
affecting the cost-efficiency and carbon reduction 
greatly, yet without sacrificing demand fulfilment. 
Table 2 provides the Comparative performance of the 
proposed framework versus alternative approaches. 

Table 2 demonstrates that the proposed MILP + 
TOPSIS framework consistently outperforms 
alternative approaches across multiple performance 
indicators. The model achieves the highest ROI of 

175% and a longer service life of 7.5 years, indicating 
both financial and operational advantages. Its 
circularity ratio (65%) and cost reduction (18.5%) are 
significantly higher than those achieved by GA (58%, 
15.7%) or LP (40%, 10.2%), showing stronger 
alignment with circular economy objectives. 
Although RBES yields the lowest solver time (180 s), 
it performs poorly in ROI, service life, and flexibility 
index, suggesting limited adaptability to complex 
decision scenarios. By contrast, the proposed 
framework balances solution quality with 
computational efficiency, achieving a strong 
flexibility index (0.85) while keeping solver time 
reasonable (320 s). These results highlight the novelty 
of integrating MILP with TOPSIS, which offers 
superior scalability and sustainability trade-offs 
compared with conventional optimisation and 
decision-making techniques. 

Table 2: Comparative Performance of the Proposed Framework versus Alternative Approaches. 

Approach ROI (%) 
Service Life 

(Years) 
Circularity 
Ratio (%) 

Cost 
Reduction 

(%) 

Carbon Footprint 
(kg CO₂  eq) 

Flexibility 
Index 

Solver Time (s) 

Proposed MILP 
+ TOPSIS 

175 7.5 65 18.5 22,000 0.85 320 

GA (Genetic 
Algorithm) Zhu et 

al. (2025) 
125 6.8 58 15.7 19,800 0.75 450 

LP (Linear 
Programming) 

Islam et al. (2020) 
100 7.0 40 10.2 20,000 0.60 250 

RBES (Rule- Based 
Expert System) 

Talebi 
    et al. (2025) 

80 6.0 35 8.3 12,000 0.50 180 

5. DISCUSSION 

The results confirm that the proposed five-step 
modular framework for integrating bio-waste into 

product–service systems effectively meet the study’s 
objectives of maximizing economic returns, 
enhancing environmental performance, and 
ensuring operational adaptability within a circular 
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economy context. Economically, the model achieves 
a superior ROI of 175%, surpassing GA (125%), LP 
(100%), and RBES (80%), with breakeven in Year 6 
and cumulative discounted cash flow of ₹76,000 by 
Year 10, supported by an NPV of ₹56,769, evidencing 
strong long-term viability. These outcomes are 
consistent with recent optimisation studies that 
applied MILP and bi- objective MILP for circular 
supply chains, which also emphasized profitability– 
sustainability trade-offs (Baldassarre & Calabretta, 
2024; Lit et al., 2024). Cost sensitivity analysis shows 
a manageable lifecycle cost increase from ₹80,000 to 

₹130,000 across demand scenarios (S1–S5), while 
carbon emissions from material use remain 
comparatively low (18.0–22.0 kg CO₂ eq), indicating 
that environmental benefits are retained under 
scaling. This aligns with MCDM-based evaluations 
such as TOPSIS and QFD–TOPSIS, which highlight 
the importance of balancing lifecycle costs with 
emissions in circular economy strategies (So ̈nnichsen 
et al., 2025; Xu et al., 2024). Service life (7.5 years) and 
circularity (65%) outperform all benchmarks, 
reinforcing the framework’s goal of extending 
product longevity and maximizing resource reuse, 
though the highest cost savings (18.5%) are coupled 
with the highest footprint (22,000 kg CO₂ eq). This 
cost–carbon trade-off is effectively addressed in our 
model through LCA–MCDM integration, resonating 
with recent reviews on MCDM applications for 
sustainability–cost balancing (Lee & Hsu, 2025). 

Operationally, the framework achieves the 
highest flexibility index (0.85) with efficient solver 
time (320 sec), ensuring practical deployment. 
Scenario-based evaluations demonstrate adaptability 
to sustainability policies, where strategies such as 
carbon taxation reduce emissions (S4: 18,800 kg CO₂; 
S5: 19,100 kg CO₂) while sustaining demand 
(~1,100–1,150 tons) and controlling costs (₹50,000–
₹53,000). These results extend recent system 
dynamics–LCA studies on circular product–service 
systems (khaenamkhaew, 2025), showing that our 
framework not only captures policy-driven 
dynamics but also provides quantifiable trade-offs 
for industrial deployment. Collectively, these 
outcomes validate the framework’s ability to deliver 
profitable, environmentally conscious, and 
operationally resilient solutions, making it 
transferable to wider industrial applications 
embracing circular economy principles. 

Computational scalability is an important 
consideration for the proposed MILP- based 
optimization framework. While the current case 
study demonstrates its tractability within the 
modular furniture sector, larger modular systems 

and complex supply chains may significantly 
increase the number of decision variables and 
constraints, leading to higher computational effort 
and longer solver times. In such cases, decomposition 
techniques (e.g., Benders or Dantzig–Wolfe 
decomposition) and heuristic or metaheuristic 
methods (e.g., Genetic Algorithms or Hybrid MILP–
heuristic approaches) could be employed to improve 
scalability and efficiency. Future research will 
explore these directions to ensure the framework 
remains applicable in large- scale, real-world circular 
economy applications. 

When compared with alternative optimisation 
and decision-making techniques, the proposed MILP 
+ TOPSIS framework demonstrates notable strengths 
in balancing solution quality, scalability, and 
computational efficiency. While recent bi-objective 
MILP models (e.g., (Baldassarre & Calabretta, 2024; 
Lit et al., 2024)) offer rigorous optimisation, they 
often face scalability challenges in multi-scenario 
contexts, where our framework maintains robust 
performance with acceptable solver time (320 s) and 
adaptability across policy scenarios. Similarly, 
MCDM approaches such as TOPSIS and QFD-
TOPSIS (So ̈nnichsen et al. (2025), Xu et al. (2024)) 
provide strong ranking capabilities but lack 
integrated economic–environmental trade-off 
analysis, which our LCA–MCDM integration 
explicitly addresses. Nonetheless, we acknowledge 
that specialised metaheuristic or hybrid models may 
achieve faster convergence in large- scale problems, 
highlighting an opportunity for future research to 
further enhance computational efficiency while 
retaining the interpretability and practicality of the 
current framework. 

6. CONCLUSION 

To summarise, the suggested MPSS optimization 
framework will provide a solution to the problem of 
providing a way to incorporate the systems thinking 
concept of the circular economy, specifically by using 
agricultural bio-waste in industry. The model is 
much effective in reducing the costs of lifecycle and 
environmental degradation and increasing 
component reusability by exploiting the modules, 
flexibility in the services, and resource regeneration. 
The combination of LCA and TOPSIS MCDM makes 
it possible to thoroughly analyze the trade-offs 
between an ecological, economic, and operational 
goal. The practicability of the model has been 
evidenced in the modular furniture sector as the 
model has proved that the bio-waste materials used 
can be easily converted into sustainable furniture at 
no cost incurred resulting in hindrance of service 
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delivery and durability. This paper serves as a solid 
base that would enhance adoption of the circular 
design and optimization approaches in sustainable 
manufacturing systems at a broader level. The model 
can be used to extend the scope of applications to 
other sectors in future research work and further the 
idea of dynamically applicable real time data 
integration of data to make decisions. Innovation will 
also continue to be fuelled by such developments in 
the shift to a resilient, low- carbon economy. 

7. LIMITATIONS AND FUTURE SCOPE 

While the framework demonstrates potential for 
application across industries, its scalability is subject 
to certain limitations, including variations in material 
types, production processes, and regulatory 
environments. Adaptation to different sectors may 
require modification of input parameters, scenario 
definitions, and objective weights to reflect industry-
specific operational and environmental 
characteristics. The model’s modular structure 
allows flexible integration of diverse resources and 
workflows, ensuring applicability beyond the 
furniture sector. Furthermore, real-time data 
integration and Industry 4.0 technologies can 

enhance dynamic decision-making and operational 
responsiveness. These considerations ensure that the 
framework remains robust, adaptable, and effective 
across diverse industrial contexts. 

Future research can focus on extending the MPSS 
optimization framework to a wider range of 
industries, such as packaging, construction, and 
consumer electronics, to replicate its sustainability 
and cost benefits. Integration of real-time IoT data 
and Industry 4.0 technologies can enable dynamic, 
adaptive decision-making under fluctuating demand 
and resource availability. Multi-objective 
optimization under uncertainty and predictive 
lifecycle analysis using AI/ML models can further 
enhance system resilience and efficiency. 
Additionally, cross-sector studies and policy-linked 
optimization scenarios can support low-carbon, 
resource-efficient, and scalable industrial 
applications. The study demonstrates that the 
proposed MILP + TOPSIS framework significantly 
improves ROI, service life, and circularity compared 
to existing methods. Future work will extend the 
model using stochastic optimisation and hybrid AI–
OR approaches to enhance scalability and 
adaptability across industries. 
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