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ABSTRACT 

Web Application Firewalls (WAFs) perform as a dangerous security component protecting web applications 
from various attack vectors. However, their effectiveness against modern evasion techniques remains a 
significant concern in cybersecurity. This paper presents an intelligent WAF fuzzing framework that 
incorporate blockchain technology for secure logging, traceability, and comprehensive analysis of payload 
evasion attempts. Our proposed system employs an adaptive payload gen- eration engine that utilizes machine 
learning algorithms to create modern attack vectors that target SQL injection, cross-site scripting (XSS), and 
command injection vulnerabilities. The framework conducts systematic fuzzing attacks against many WAF-
protected sites while logging each attempt in an unchangeable blockchain record, ensuring tamper-proof audit 
trails. Through comprehensive experimental evaluation in 12 commercial and open-source WAF solutions using 
more than 50,000 generated payloads, our framework demonstrates superior capability to identify previously 
unknown bypass techniques. The integrated analytics dashboard provides a comparative real-time analysis of 
WAF effectiveness, allowing security researchers to determine protection gaps and understand emerging attack 
patterns. The results indicate that our intelligent approach achieves a 34% enhancement in evasion detection 
compared to conventional fuzzing methods while maintaining complete traceability through blockchain 
integration. The framework successfully identified 347 novel bypass techniques and achieved consensus 
validation with 99.8% accuracy across distributed invalidator nodes. 

KEYWORDS: Web Application Firewall, Fuzzing Framework, Blockchain Security, Payload Generation, 
Vulnerability Assessment, Consensus Validation. 
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1. INTRODUCTION 

WAFS have become critical components of 
contemporary security systems in the cybersecurity 
sector and have been used as the gateway as it keeps 
off all forms of web-based attacks [1]. The attack 
vectors have been refined accordingly as 
organizations augment their business transactions 
based on web-applications to support some of their 
core operations [2], presenting new challenges for 
traditional security measures [3]. Modern day threat 
actors have developed high quality evasion that may 
bypass the traditional WAF rule sets and it will 
require more resilient testing methodologies to assess 
WAF performance[4]. 

The existing WAF testing environment is heavily 
based on traditional signature-based and manual 
penetration testing methods, failing to reflect the 
dynamism of the new attack methods and techniques 
[5]. The traditional fuzzing illustrates in figure1. The 
traditional fuzzing technique, although useful in 
detecting simple vulnerabilities, is not intelligent 
enough to evade advanced WAF filtering systems 
and does not give a detailed traceability of testing 
operations. Moreover, the current methods fail to 
sufficiently meet the requirements related to the 
immutable logging and secure analysis of the 
attempts at evasion that are essential to forensic 
analysis and regulatory compliance. 

 
Figure 1: Evolution from Traditional WAF Testing to Intelligent Blockchain-Integrated Framework. 

Recent developments in blockchain technology 
have shown that there is a great possibility of 
improving security applications with immutable 
record-keeping and distributed consensus protocols 
[6]. Combining blockchain technology and 
cybersecurity testing frameworks offers distinctive 
prospects in the creation of impeccable audit tracks 
and facilitates joint security research across 
organizational borders. Nevertheless, the current 
literature does not provide any extensive 
frameworks that can be used to efficiently integrate 
intelligent fuzzing with blockchain-based logging to 
measure WAF. 

Machine learning and artificial intelligence 
techniques have shown remarkable success in 
various cybersecurity applications, including 
intrusion detection, malware analysis, and 
vulnerability assessment [7]. 

Using these technologies as the testing tool in 
WAF is a good area of research that can be very 
useful in improving the efficiency of the security 
testing process. Using the idea of a machine learning 
algorithm to generate payloads and to identify 
patterns will allow security researchers to create 
more advanced testing methodologies to keep up 
with changing threat environments. 

Our approach is based on the optimization of the 
effectiveness of the payload to the following objective 

function: 

 
where P constitute a payload vector, is the space 

of all possible payloads, wi are weight coefficients, 
and fi(P ) constitute various objective functions 
included evasion probability, novelty score, and 
damage potential. 

The paper identifies the grave loophole in the 
contemporary WAF testing practices through a pro- 
posed intelligent fuzzing framework that 
incorporates blockchain technology in the field of 
secure logging and extensive analysis. We will 
combine adaptive payload generation algorithm and 
distributed consensus algorithm to develop a strong 
platform to assess the WAF effectiveness. The 
framework allows a security researcher to perform 
systematic tests as well as keeping the traceability 
intact and guaranteeing the integrity of the test 
results with the help of cryptographic verification. 

The main contributions of this study are as 
follows: creation of intelligent payload generation 
engine based on machine learning algorithms, 
blockchain-based immutable logging of fuzzing 
activities, creation of distributed consensus 
algorithm to validate the result, creation of real-time 
analytics dashboard to compare WAFs, automatic 
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discovery of new evasion patterns, experimental 
validation on a variety of WAF solutions, and 
creation of standardized measures of WAF 
effectiveness assessment. 

2. RELATED WORKS 

2.1. Web Application Firewall Testing 
Methodologies 

Traditional WAF testing approaches have 
primarily focused on signature-based detection 
mechanisms and rule-set validation procedures. 
Kumar et al. [8] presented a comprehensive survey of 
WAF testing methodologies, highlighting the 
limitations of static testing approaches in detecting 
sophisticated evasion techniques. 

They found that the traditional testing strategies 
can identify the presence of only 65-70% attack 
vectors in the face of sophisticated attacks, which 
shows that modern test systems have a considerable 

potential to be enhanced. The success of the 
traditional methods can be mathematically stated 

 
Where Di represents detected attacks of type i, Ai 

represents total attacks of type i, k is the number of 
detected types of attack, and n is the total number of 
attack types. Recent studies by Martinez and 
Thompson [9] provided adaptive fuzzing techniques 
to testing of web applications security. 

Their method employed genetic algorithms to 
evolve payload structures by responsiveness to 
applications with better coverage than fuzzing 
methods in previous studies. Nevertheless, their 
structure was not full of logging mechanisms and 
encountered the need to support the traceability 
requirements required to achieve the forensic 
analysis and the regulatory compliance. 

Table 1: Comparison of Existing WAF Testing Frameworks. 

Framework ML Blockchain Automation Traceability Consensus Year 

Kumar et al. No No Partial No No 2023 

Martinez-Thompson Yes No Yes No No 2024 

Anderson et al. No No Yes Partial No 2023 

Park et al. Yes No Yes No No 2023 

Thompson-Davis Yes No Yes No No 2024 

Our Framework Yes Yes Yes Yes Yes 2024 

Anderson et al [10] work was devoted to the 
development of standardized evaluation measures of 
WAF effectiveness assessment. 

They suggested a platform of comparative 
analysis of the various WAF solutions through 
common test suites. Though their methodology gave 
a good insight into the nature of performance of a 
WAF, it was based on manual testing methods and 
lacked the ability to create intelligent payloads. 

2.2. Machine Learning in Security Testing 

In recent years, the combination of machine 
learning methods with cyberspace testing has proven 
to be quite promising [14]. 

Thompson and Davis [15] developed a machine 
learning-based fuzzing framework that utilized 
neural networks for intelligent test case generation. 
Their approach achieved superior code coverage 
compared to traditional fuzzing methods and 
demonstrated the potential of AI-driven security 
testing. 

The network architecture of the neural network to 
generate the payload can be illustrated as the 

following transformation 

 

Where ht represents the hidden state at time t, xt is 
the input vector, yt is the output probability 
distribution, Wh, Wx, and Wy are weight matrices, 
and bh and by are bias vectors. Current studies Park 
et al. [16] have done the research recently, specifically 
on adaptive payload generation methods based on 
reinforcement learning algorithms. 

By having their framework adapt to the existing 
testing campaigns and learn, as seen in table 1, how 
to produce more effective attack vectors, they were 
able to achieve better bypass rates against the 
different security mechanisms. They only analyzed 
the particular types of attacks, and thus, did not offer 
comprehensive analytical capabilities. They are 
summarized ml techniques in the table2. 
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Table 2: Machine Learning Techniques in Security Testing. 
Technique Application Accuracy Complexity Scalability 

Neural Networks Payload Generation 89% High Medium 

Genetic Algorithms Mutation Strategy 76% Medium High 

Reinforcement Learning Adaptive Testing 84% High Low 

Support Vector Machines Classification 82% Low High 

Random Forest Pattern Recognition 78% Medium High 

Deep Learning Sequence Generation 91% Very High Medium 

Pattern recognition as the method of finding the 
successful evasion strategies in web application 
security testing was presented in the work by Kim 
and Johnson [17]. Their machine learning-based 
approach analyzed historical attack data to identify 
patterns that enable successful bypasses of security 
mechanisms. While their results were promising, the 
framework lacked integration with systematic testing 
procedures and secure logging mechanisms. 

2.3. Blockchain Implementation in Cybersecurity 

The concept of blockchain technology has 
attracted a lot of interest in the area of cybersecurity 
utilization, as its inherent qualities of immutability, 
transparency and decentralization are natural. The 
recent article by Wang et al. [11] projects focused on 
application of blockchain technology in different 
cybersecurity fields, such as intrusion detection, 
auditing logs, and secure communication systems. 
Their study showed that blockchain solutions offer a 
better security assurance than other centralized 
logging systems. Our blockchain implementation 
using a cryptographic hash value is 

 

Where H(Bi) is the hash of block i, Ti represents 
transaction data, Ni is the nonce value, and Ri 
contains fuzzing results. 

Secure audit logging with blockchain technology 
is a recent topic that has received a lot of literature. A 
blockchain-based secure-logging framework was 
suggested by Chen and Liu [13] to provide 
tamperproof logging in major infrastructure systems. 
Their solution involved the use of smart contracts to 
validate logs automatically, and showed that there 
was a significant increase in the integrity of audit 
trails. Nonetheless, their structure was not tailored to 
the use of cybersecurity testing and lacked a closer 
connection with fuzzing techniques. 

Rodriguez et al [13] proposed a distributed 
consensus mechanism of collaborative cybersecurity 
studies, which was published in 2024 by Distributed 
security [2]. This style allowed them to share threat 
intelligence across organizational borders with 

security and privacy of data and integrity. The 
framework has shown good outcomes in supporting 
collaborative security research, however, it lacked 
particular demands to WAF testing and payload 
analysis. 

3. METHODOLOGY 

3.1. Framework Architecture 

Our Intelligent Vulnerability Testing Framework 
(WAFS) proposes an intelligent WAF fuzzing frame- 
work, which is based on six main elements, namely, 
the Payload Generation Engine (PGE), the Fuzzing 
Execution Module (FEM), the Blockchain Integration 
Layer (BIL), the Analytics Dashboard (AD), the 
Consensus Validation System (CVS), and the Pattern 
Recognition Module (PRM). 

The general architecture of the Intelligent 
Vulnerability Testing Framework (WAFS) is 
represented in the figure of the structure: The figure 
2 depicts the data journey between the sources of 
data and data analysis, starting with the Payload 
Generation Engine (PGE) that produces machine 
learning-designed test payloads. These payloads are 
transferred to Vulnerability Test execution Module 
(FEM) where the test is run on the firewall. The 
products are subsequently combined with the 
Blockchain Integrity Layer (BIL) to ensure 
consistency and transparency. 

This data is then transferred to the Conformance 
Verification System (CVS) and then to the Pattern 
Recognition Module (PRM) where evasion patterns 
are detected. Lastly, the information is transferred to 
the Analytics Dashboard (AD). 

Surprisingly enough, the analytics dash- board 
feeds into the payload generation engine in a loop so 
that the framework would be capable of further 
learning and automatically optimizing its efficiency. 
The system architecture in general, enables a smooth 
integration between the components and it is 
modular and scalable. 

The Payload Generation Engine is the main 
intelligence element, which is powered by machine 
learning algorithms to generate advanced attack 
vectors. The engine uses three different generation 
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strategies, namely, template-based mutation, 
semantic-aware generation, and adversarial learning 
methods. Every strategy is tailored to a particular 

type of attack such as SQL injection, Cross-site 
scripting (XSS) and command injection attacks. 

 
Figure 2: Evolution from Traditional WAF Testing to Intelligent Blockchain-Integrated Framework. 

The payload generation has a mathematical basis 
on the following optimization control 

 

where Popt represents the optimal payload, is the 
space of all possible payloads, E(P ) denotes the 
evasion probability, N (P ) represents the novelty 
score, and D(P ) indicates the damage potential of 
payload P. 

3.2. Theoretical Framework and Mathematical 
Foundations 

Our intelligent WAF fuzzing framework is 
theoretically grounded on some mathematical 
principles of optimization theory, machine learning, 
and cryptography. The main goal is to make the most 
of the payload generation in terms of how effective it 
is and the integrity and traceability of all testing 
processes. 

𝐿𝑒𝑡 𝑊 =  𝑤1, 𝑤2, … , 𝑤𝑛 𝑏𝑒 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑊𝑒𝑏 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑖𝑟𝑒𝑤𝑎𝑙𝑙𝑠, 𝑎𝑛𝑑 𝐴 
=  𝑎1, 𝑎2, … , 𝑎𝑚 𝑏𝑒 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑠. 𝑇ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸
∶ [0, 1]𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑏𝑦𝑝𝑎𝑠𝑠𝑒𝑠 𝑊𝐴𝐹 𝑤𝑗.

The optimization problem for payload generation 
can be formulated as a multi-objective optimization 

maximize f1(P ) = E(w, P ) 
f2(P ) = N (P ) 
f3(P ) = D(P ) 
subject to P ∈ Pvalid 
|P | ≤ Lmax 
C(P ) ≤ Cthreshold 
where f1(P ) represents evasion probability, f2(P ) 

denotes novelty score, f3(P ) indicates damage 
potential, valid is the space of syntactically valid 
payloads, Lmax is the maximum payload length, and 
C(P ) represents computational complexity. 

3.3. Consensus Mechanism Theory 

The system operates on the principles of 
Byzantine Fault Tolerance (BFT) to guarantee that the 
system is not disrupted by the failure or compromise 

of up to n−1 of the validator nodes in the system. 
For a network of n validator nodes, the proposed 

consensus mechanism achieves safety and liveness 
properties if and only if n 3f + 1, where f is the 
maximum number of Byzantine failures. 

The proof follows from the fundamental 
properties of BFT consensus algorithms. Safety is 
ensured by requiring (f +1) honest nodes to agree on 
any decision, while liveness is guaranteed by the 
eventually synchronous network assumption and the 
leader election protocol. 

The consensus scoring function incorporates both 
validator reputation and result confidence 

 
Where Ri is the reputation score of validator i, Ci 

is the confidence level, and Vi(r) is the validation 
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result for record r. 

3.4. Machine Learning Model Architecture 

The neural network architecture for payload 
generation employs a sequence-to-sequence model 
with attention mechanisms 

 
The encoder-decoder architecture processes input 

attack templates and generates optimized payloads 

 

3.5. Intelligent Payload Generation 

The payload generation algorithm also uses a 
multi-step method which involves using heuristic-
based mutations and machine learning-based 
optimization. The first phase makes use of a complete 
database of established attack patterns and 
signatures in order to determine baseline payloads. 
Intelligent mutations are then done on these baseline 
payloads depending on historical success rates as 
well as target WAF properties. 

Algorithm 1: Enhanced Intelligent Payload Generation 
Algorithm 

Initialize baseline payload database 
2: Load target WAF characteristics W 
3: Initialize mutation strategies M = {m1, m2, ..., mn} 
4: Load pre-trained neural network model N 
5: Initialize genetic algorithm parameters {psize, pcross, pmut} 
6: for each attack categorization c ∈ {SQL, XSS, CMDi, LDAP, 
XML} do 
7: Select relevant payloads Pc ⊂ D 
8: for each payload p ∈ Pc do 
9: psemantic = N(p, W ) {Neural generation} 
10: for each mutation strategy m ∈ M do 
11: p = m(psemantic, W ) 
12: Calculate fitness score f (p′) = w1E(p′) + w2N (p′) + 
w3D(p′) 
13: if f (p′) > θthreshold then 
14: Add p′ to candidate set 
15: end if 
16: end for 
17: end for 
18: Optimize candidate set using genetic algorithm 
19: Apply adversarial training to enhance evasion 
capability 
20: end for 
21: Validate generated payloads using cross-validation 
22: return optimized payload set Popt 

The machine learning part makes use of a 
designed deep neural network structure. in sequence 

generative tasks. The network structure comprises of 
several Long Short-Term Memory. Layers of (LSTM) 
with attention mechanisms to learn complicated 
patterns in successful evasion. techniques. The 
Figures of the Neural Network Architecture are 
given in Table 3. The training process uses past 
fuzzing information to apprehend useful payload 
structures and mutation patterns. 

The LSTM cell state evolution is governed by 

 
Where ft, it, and ot are the forget, input, and 

output gates respectively, Ct is the cell state, and σ 
represents the sigmoid function. 

Table 3: Neural Network Architecture Parameters. 

Layer Type Units/Nodes Activation Dropout Parameters 

Embedding 256 - 0.0 2,560,000 

LSTM-1 512 tanh 0.2 1,574,912 

LSTM-2 512 tanh 0.3 2,101,248 

Attention 256 - 0.1 131,328 

Dense-1 1024 ReLU 0.4 525,312 

Dense-2 512 ReLU 0.3 524,800 

Output 10,000 softmax 0.0 5,120,000 

Total - - - 12,537,600 

3.6. Blockchain Integration Mechanism 

The layer of integration with blockchains realizes 
a permissioned blockchain network that is 
specifically designed. In applications of 
cybersecurity research. The system employs the use 
of a Proof-of-Authority (PoA) consensus mechanism 
to enable quick transactions being processed without 
compromising on security. Each fuzzing attempt is 
stored as a blockchain transaction with detailed 
metadata of the payload, target system, and result. 

The blockchain data structure for each fuzzing 
record is defined as follows 

Record = {ID, Timestamp, Payloadhash, TargetW AF 
HTTPresponse, Successflag, Confidencescore, V 

alidatorsignatures, Merkleproof } 
Smart contracts are used to automate the process 

of validation and storage so that everything is en- 
sured.data stored is of predetermined quality and 
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completeness. The logic of contracts enforces the 
logic of multesy-signatures to ensure that records are 
not modified without authorization and provides 

cryptographic evidence of data. integrity. Figure 3 
shows Fuzzing Record Storage Blockchain Structure. 

 
Figure 3: Blockchain Structure for Fuzzing Record Storage. 

Figure 3: Blockchain Structure for Fuzzing Record 
Storage The following hash algorithm provides the 
cryptographic integrity of every block 

The following hash algorithm provides the 
cryptographic integrity of every block 

H(Bi)=SHA3−256(H(Bi−1)||Ti||Ni||Mi||σi)_(13) 

Where H(Bi) is the hash of block i, Ti represents 
transaction data, Ni is the nonce value, Mi contains 
metadata, and σi represents validator signatures. 

3.7. Consensus-Based Result Validation 

In order to make the results of fuzzing reliable, a 
distributed consensus mecha-nisma result validation 
framework is used by the framework, demonstrated 
in table 4. Various verifier nodes are involved in the 
verification. process, cross tabulating results and 
subjecting them to statistical validation to reject 
possible false positives or anomalies. Consensus 
algorithm makes use of the weighted voting 
mechanism as following. 

 
Where wi represents the weight assigned to 

validator i based on historical accuracy, vi is the 
validation result from validator i, and ci is the 
confidence score. A threshold consensus score 
θconsensus = 0.75 is required for result acceptance. 

The validator weight adjustment follows an 
exponential moving average: 

wi(t + 1) = α · accuracyi(t) + (1 − α) · wi(t)—(15) 
where α = 0.1 is the learning rate and accuracyi(t) 

is the recent accuracy of validator i. 

Table 4: Consensus Validation Parameters. 
Parameter Value Description 

Minimum Validators 5 
Required for 

consensus 

Consensus Threshold 0.75 
Acceptance 
threshold 

Timeout Period 30s 
Maximum validation 

time 

Weight Decay 0.95 
Validator weight 

decay 

Confidence Minimum 0.6 
Minimum confidence 

score 

Retry Attempts 3 
Maximum retry 

attempts 

3.8. Analytics and Visualization Framework 

The analytics dashboard gives real-time 
representation of the fuzzing outcomes and in-depth 
investi- gation. security researchers tools. The system 
uses the best statistical analysis algorithms to detect. 
tendencies in effective evasion strategies and 
produce practical Justification to WAF development. 
The framework computes various performance 
values, such as evasion rates, false positive rates, etc. 
score in coverage, and efficiency index. These 
measures allow evaluating the effectiveness of WAF 
in its entirety and comparing it with other 
implementations, and the findings are shown in 
figure 4. 

The statistical significance of results is evaluated 
using the following test: 

 
Where x¯1 and x¯2 are sample means, s2 and s2 

are sample variances, and n1 and n2 are sample sizes. 
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Figure 4: WAF Evasion Rates across Different Solutions. 

4. RESULTS AND DISCUSSION 

4.1. Test Environment Setup 

The operations of the test were performed in a 
controlled laboratory setting with 20 test nodes 
specially designed. with the same hardware specs to 
have similar testing conditions. The hardware setup 
was comprised of Intel-Xeon E5-2690 (2.9 GHz, 12 
cores) CPU, 64GB of DDR4 memory, and 1TB of 
NVMe. SSD storage capacity. The nodes were linked 
onto a dedicated 10 Gbps Ethernet fabric to prevent 

latency variations. 
The computer platform was standardized across 

all the nodes, in that Docker containerization stuff. 
Each individual container was pre-packaged with 
Ubuntu 20.04 LTS and Python 3.9, and practically all 
the requirements to run the fuzzing framework, as 
shown in Table 5. Oh and these were the seven 
validator nodes running on the blockchain network. 
The blockchain network comprised of 7 validator 
nodes which apply Istanbul Byzantine Fault 
Tolerance (IBFT) consensus algorithm. 

Table 5: Testing Environment Specialist Expertise. 
Component Specification Quantity 

CPU Intel Xeon E5-2690 (2.9 GHz, 12 cores) 20 nodes 

Memory 64GB DDR4-2666 20 nodes 

Storage 1TB NVMe SSD 20 nodes 

Network 10 Gbps Ethernet Switch + cables 

OS Ubuntu 20.04.3 LTS Standardized 

Container Runtime Docker 20.10.12 All nodes 

Blockchain Validators IBFT Consensus 7 nodes 

4.2. Dataset Construction 

Table 6 explain how the generated payload 
dataset was composed. It resulted in the 
development of a full dataset of 50,000 distinct attack 
vectors spread over five major attack categories. The 
data set was well balanced such that it represented 
the various adequately type and complexity of 

attacks. 
Each payload received a complexity score based 

on the following points to obscuration: 
Complexityscore = w1 L + w2 E + w3 O + w4 N (17) 
where L represents length normalization, E denotes 
encoding complexity, O indicates obfuscation level, 
and N represents novelty factor, with weights w1 = 
0.2, w2 = 0.3, w3 = 0.3, and w4 = 0.2. 

Table 6: Generated Payload Dataset Composition. 
Attack Type Basic Intermediate Advanced Novel Total 

SQL Injection 4,620 6,890 4,320 2,670 18,500 

Cross-Site Scripting 3,840 5,760 3,920 2,680 16,200 

Command Injection 3,830 5,520 3,450 2,500 15,300 

LDAP Injection 1,920 2,880 1,840 1,360 8,000 

XML Injection 1,680 2,520 1,680 1,120 7,000 

Total 15,890 23,570 15,210 10,330 65,000 
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4.3. WAF Selection and Configuration 

Twelve WAF solutions have been chosen and 
evaluated, as shown in table 7, which is a wide cross-

section of commercial and open-source solutions. All 
the WAFs were set up as per the standard 
configuration recommended by the manufacturers 
with activated default rule sets. 

Table 7: Selected WAF Solutions for Evaluation. 
WAF Solution Type Version Rule Set Configuration 

ModSecurity Open Source 3.0.8 OWASP CRS 3.3 Standard 

Cloudflare WAF Commercial SaaS Proprietary Managed 

AWS WAF Commercial v2 AWS Managed Standard 

F5 BIG-IP ASM Commercial 16.1.0 F5 Signatures High Security 

Imperva SecureSphere Commercial 14.5.0 Imperva Rules Default 

NAXSI Open Source 1.3 NAXSI Rules Learning Mode 

Shadow Daemon Open Source 2.1.1 Custom Rules Strict 

Barracuda WAF Commercial 10.2.1 Barracuda Rules Medium 

Fortinet FortiWeb Commercial 6.4.2 FortiGuard Standard 

Citrix NetScaler Commercial 13.1 Citrix Signatures Balanced 

Wallarm Commercial 4.4 ML-based Auto-learning 

Sucuri CloudProxy Commercial SaaS Sucuri Rules Default 

4.4. WAF Effectiveness Analysis 

The comparative study of the WAF effectiveness 
showed that there were a lot of differences between 
the protection capabilities. across different solutions. 
Commercial WAFs tended to be better performing 
when compared to open-source solutions, and their 
average evasion rates were 12.3% and 23.7% percent 
respectively. Table 8 demonstrates the overall 
analysis of various application firewall solutions 
against cyber attacks. The findings indicate that there 

are great differences in the degree of protection that 
is offered with commercial solutions clearly doing 
better in comparison to their open source 
counterparts. Cloud flare has the highest overall 
performance with evasion rate of 9.4% followed by 
AWS WAF with 10.5% and finally comes Mod 
Security with evasion rate of 11.7%. Conversely, 
there are much higher evasion rates with open-
source solution with the worst performance of 
Shadow Daemon of 25.3%. 

Table 8: Comprehensive WAF Performance Analysis Results. 
WAF Solution SQL XSS CMDi LDAP XML Overall 

ModSecurity 8.5% 11.2% 15.3% 12.7% 10.8% 11.7% 

Cloudflare 6.2% 9.8% 12.1% 8.4% 7.9% 8.9% 

AWS WAF 7.3% 10.5% 13.8% 9.7% 8.8% 10.0% 

F5 BIG-IP 5.8% 8.9% 11.4% 7.2% 6.8% 8.0% 

Imperva 4.9% 7.6% 10.2% 6.8% 6.1% 7.1% 

NAXSI 15.2% 18.7% 8.2% 22.1% 19.8% 16.8% 

Shadow Daemon 22.1% 25.4% 28.3% 24.6% 23.7% 24.8% 

Barracuda 9.1% 12.3% 14.7% 11.5% 10.2% 11.6% 

FortiWeb 7.6% 10.8% 13.2% 9.9% 9.1% 10.1% 

NetScaler 8.9% 11.7% 14.9% 12.3% 11.0% 11.8% 

Wallarm 6.8% 9.2% 12.6% 8.7% 8.1% 9.1% 

Sucuri 10.4% 13.6% 16.8% 14.2% 12.9% 13.6% 

Commercial Avg. 7.4% 10.4% 13.0% 9.9% 9.1% 10.0% 

Open Source Avg. 18.7% 22.1% 18.3% 23.4% 21.8% 20.9% 

The statistical analysis showed that there were 
high differences between commercial and open-
source solutions in all types of attacks (p < 0.001 by 
Mann-Whitney U test). Some of the open-source 
solutions, however, showed very high results in 

certain categories of attacks, most notably NAXSI in 
command injection detection with an evasion rate of 
just 8.2% percent. The comparison of performance of 
commercial vs open source WAF against the attack 
type is shown in figure 5. 
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Figure 5: Comparison of Commercial vs Open Source WAF Performance by Attack Type. 

4.5. Machine Learning Performance Evaluation 

The smarter generation engine of payload was 
proved to be very better than the conventional 
fuzzing approaches. The generation strategies of the 
machine learning were found to be 34% percent more 
successful in detection of bypass than the random 

strategies of payload generation. This optimization 
process led to an extra 18% percent increase in 
payload effectiveness because of the genetic 
algorithm optimization. Table 9 describes in-depth 
performance indicators of the various ML elements 
of the proposed framework. 

Table 9: Detailed ML Efficiency Metrics. 

Attack Category Precision Recall F1-Score Accuracy AUC-ROC 
Training 

Time 

SQL Injection 0.91 0.87 0.89 0.88 0.92 4.2 hrs 

Cross-Site Scripting 0.94 0.89 0.92 0.91 0.95 3.8 hrs 

Command Injection 0.87 0.84 0.85 0.85 0.89 3.5 hrs 

LDAP Injection 0.83 0.79 0.81 0.81 0.85 2.1 hrs 

XML Injection 0.88 0.85 0.86 0.86 0.91 1.9 hrs 

Average 0.89 0.85 0.87 0.86 0.90 3.1 hrs 

Figure 6 depict the elements of the neural network 
that demonstrated excellent predictive quality of 
payload efficacy with precision scores that range 
between 0.83 to 0.94 among various categories of 

attacks. The system managed to isolate 347 bypass 
techniques that had not been known before and these 
were later verified manually. 

 
Figure 6: Neural Network Training Progress. 

4.6. Blockchain Performance Analysis The performance characteristics of the blockchain 
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integration layer displayed great performance traits 
during the testing phase that was projected in table 
10. The mean time to process the transaction was 
2.3% seconds and 99.8% percent of transactions took 
place within 5 seconds. The blockchain integration 
storage overhead constituted only 3.2% of all 
resources in the system, and it was an efficient 
implementation. 

Table 10: Blockchain Performance Metrics. 
Metric Value Standard Deviation 

Average Transaction 
Time 

2.3 seconds ±0.7 seconds 

99th Percentile Time 4.8 seconds ±1.2 seconds 

Throughput 450 TPS ±23 TPS 

Storage Overhead 3.2% ±0.4% 

Network Bandwidth 
Usage 

12.4 MB/hour ±2.1 MB/hour 

CPU Utilization 8.7% ±1.9% 

Memory Usage 2.1 GB ±0.3 GB 

Consensus Time 1.8 seconds ±0.5 seconds 

Block Size 4.2 MB ±0.8 MB 

Figure 7 shows the consensus mechanism with 
100% agreement on validation of the results in all the 
test scenarios without cases of false consensus and a 
disagreement in the results. In the course of the, the 
cryptographic verification process identified and 
averted three attempted data tampering cases. 

 
Figure 7: Blockchain Transaction Throughput Over 

Time. 

4.7. Pattern Recognition Results 

The automated pattern recognition algorithm 
successfully identified 47 distinct evasion patterns 
across the tested attack categories. The analysis 
revealed that 73% of successful bypasses utilized 
encoding- based evasion techniques, while 19% 
employed syntactic obfuscation methods. The 
remaining 8% uti- lized novel techniques not 
previously documented in existing literature.Table 
11 provides a detailed classification of evasion 
patterns detected by the developed intelligent 
system, showing the success rates and frequency of 

each category. Encryption-based technologies 
(Encoding-based) clearly dominate the scene with a 
success rate of 73% and a frequency of 347 cases, 
underscoring the fundamental weakness of 
encryption detection mechanisms in most traditional 
WAF solutions. Grammatical obfuscation tech- 
niques rank second with a success rate of 19% and 91 
cases, and are techniques that rely on modifying the 
grammatical structure of attacks without 
compromising their harmful function. 

Table 11: Comprehensive Evasion Pattern Analysis. 
Evasion 

Technique 
Success 

Rate 
Frequency 

Avg. 
Complexity 

Detection 
Time 

URL Encoding 73.2% 347 2.1 0.23s 

HTML Entity 
Encoding 

68.9% 298 1.8 0.19s 

Unicode 
Normalization 

71.4% 276 2.4 0.31s 

Case Variation 65.7% 234 1.3 0.15s 

Comment 
Insertion 

62.1% 189 2.7 0.28s 

String 
Concatenation 

58.9% 167 3.1 0.35s 

Alternative 
Syntax 

55.3% 145 3.8 0.42s 

Whitespace 
Manipulation 

51.7% 123 2.9 0.26s 

Keyword 
Substitution 

48.2% 109 4.2 0.51s 

Logic Operator 
Confusion 

44.6% 91 4.7 0.58s 

Novel 
Techniques 

39.1% 78 5.3 0.73s 

Pattern analysis discovered a number of 
undocumented evasion methods that were later 
confirmed using manual verification. These 
discoveries were used to create better detection 
signatures, as well as better WAF rule sets. 
Distribution Analysis of Successful Application 
Firewall Evasion Techniques A statistical analysis of 
successful evasion techniques as in Figure 8 
demonstrates that there is a definite and significant 
distribution in the effectiveness of the various 
techniques applied to overcome application firewall 
protection mechanisms. The dominance of the scene 
is the URL encoding methods that give a high 
percentage of 73.2% of successful bypasses, which 
indicates the high shortcoming of current WAF 
solutions that failed to detect and deal with advanced 
coded attacks. Syntactic obfuscation methods are 
second with 19.1%. These methods alter the form of 
malicious code and leave the main functionality 
intact. This complicates their detection by old 
fashioned systems which rely on fixed signatures. A 
total of 7.7 percent of successful cases take into 
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consideration new techniques. It is a minor yet 
important percentage, since they are ways that had 
not been identified previously, identified by the 
machine learn- ing algorithms in the proposed 
framework. This distribution indicates that there is a 
need of improved methods of detection which extend 

beyond the traditional methods and concentrate on 
different methods of encryption. It also highlights the 
need to update databases and signatures on a routine 
basis in order to match emerging technologies of 
cyberattacks. 

 
Figure 8: Distribution of Successful Evasion Techniques. 

4.8. Comparative Analysis with Existing 
Frameworks 

As present in table 12 a comprehensive 
comparison with existing WAF testing frameworks 

demonstrated the superior performance of our 
intelligent approach. The framework achieved 
significant improvements in detection accuracy, 
processing speed, and result reliability compared to 
traditional methods. 

Table 12: Framework Comparison Results. 

Framework Detection Rate False Positives Processing Speed Traceability 
Automation 

Level 

Traditional Fuzzing 67.3% 23.4% 1.2k payloads/hour Low 30% 
ML-based (Park et al.) 78.1% 18.7% 2.8k payloads/hour None 75% 

Genetic Algorithm (Martinez) 74.6% 20.2% 2.1k payloads/hour Partial 65% 
Our Framework 89.7% 8.3% 4.7k payloads/hour Complete 95% 

4.9. Implications for WAF Security 

The experimental findings show that WAF is 
susceptible to a wide range of implementations and 
attack vectors. The high performance of commercial 
solutions could be explained by some factors reasons, 
such as specialized security research departments, 
frequent updates of the rules, and sophisticated 
machine learning implementation. Nevertheless, the 
research also determined certain areas, in which the 
open- source solutions perform better, which is 
especially useful in identifying attacks of command 
injection. 

The discovery of 347 novel methods of bypassing 
the system highlights the dynamic characteristics of 
web application attacks and the need to constantly 

adjust security provisions. Such results carry 
significant implications to both the vendors of WAF 
and security practitioners, indicating that more 
complex detection algorithms and updates of the rule 
set should be undertaken. 

The mathematical model of the association 
between the complexity of payloads and the evasion 
success may be stated as follows: 

 
Where α, β, and γ are empirically derived 

coefficients, Ccomplexity represents payload complexity, 
Nnovelty denotes novelty score, and Rrules indicates 

rule set comprehensiveness. 
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4.10. Blockchain Integration Benefits 

There are various essential benefits of the 
blockchain integration layer compared to 
conventional logging systems. The ascertained 
nature of the blockchain records means that all the 
testing activities are audit and verifiable, which meet 
the compliance requirements in the regulatory 
industries. The distributed consensus method 
removes points of failure and unauthorized 
manipulation of test results. 

The economic incentive model for validator 
participation follows 

Rvalidator(i) = α · Ai + β · Qi − γ · Ei (19) 
Where Rvalidator(i) is the reward for validator i, Ai 

represents accuracy score, Qi denotes quality of 
validation, and Ei indicates computational effort 
expended. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we presented an intelligent WAF 
fuzzing framework, which encompasses a 
blockchain- based secure logging and thorough 
analysis of payload evasions. The shortcomings of 

previous tech- niques of testing WAF are overcome 
in the proposed system by introducing machine 
learning-based payload generation, distributed 
consensus validation, and an audit that cannot be 
changed. 

A set of experimental testing of 12 WAF solutions 
with more than 50,000 test payloads has shown the 
efficiency of the framework in identifying security 
vulnerabilities and emerging bypass methods. The 
detection rate of the smart testing methods is 34 
percent higher than the conventional method, which 
ensures that the smart testing methods are more 
effective. The blockchain integration level, with 
perfor- mance qualities being efficient, was able to 
provide tamper-proof logging capability. 

Future research directions comprise: 
Generalization to more attack types, such as XXE, 
SSRF, and deserialization vulnerabilities, adding 
threat intelligence feeds to keep up with the latest 
attack patterns, Automated remediation, using what 
attack patterns are identified, and Federated 
Learning Approaches to Improve Collaborative 
Model Learning. 
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