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ABSTRACT

Web Application Firewalls (WAFs) perform as a dangerous security component protecting web applications
from various attack vectors. However, their effectiveness against modern evasion techniques remains a
significant concern in cybersecurity. This paper presents an intelligent WAF fuzzing framework that
incorporate blockchain technology for secure logging, traceability, and comprehensive analysis of payload
evasion attempts. Our proposed system employs an adaptive payload gen- eration engine that utilizes machine
learning algorithms to create modern attack vectors that target SQL injection, cross-site scripting (XSS), and
command injection vulnerabilities. The framework conducts systematic fuzzing attacks against many WAF-
protected sites while logging each attempt in an unchangeable blockchain record, ensuring tamper-proof audit
trails. Through comprehensive experimental evaluation in 12 commercial and open-source WAF solutions using
more than 50,000 generated payloads, our framework demonstrates superior capability to identify previously
unknown bypass techniques. The integrated analytics dashboard provides a comparative real-time analysis of
WAEF effectiveness, allowing security researchers to determine protection gaps and understand emerging attack
patterns. The results indicate that our intelligent approach achieves a 34% enhancement in evasion detection
compared to conventional fuzzing methods while maintaining complete traceability through blockchain
integration. The framework successfully identified 347 novel bypass techniques and achieved consensus
validation with 99.8% accuracy across distributed invalidator nodes.

KEYWORDS: Web Application Firewall, Fuzzing Framework, Blockchain Security, Payload Generation,

Vulnerability Assessment, Consensus Validation.
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1. INTRODUCTION

WAFS have become critical components of
contemporary security systems in the cybersecurity
sector and have been used as the gateway as it keeps
off all forms of web-based attacks [1]. The attack
vectors have been refined accordingly as
organizations augment their business transactions
based on web-applications to support some of their
core operations [2], presenting new challenges for
traditional security measures [3]. Modern day threat
actors have developed high quality evasion that may
bypass the traditional WAF rule sets and it will
require more resilient testing methodologies to assess
WAF performance[4].
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I

Traditional
WAF Testing

The existing WAF testing environment is heavily
based on traditional signature-based and manual
penetration testing methods, failing to reflect the
dynamism of the new attack methods and techniques
[5]. The traditional fuzzing illustrates in figurel. The
traditional fuzzing technique, although useful in
detecting simple vulnerabilities, is not intelligent
enough to evade advanced WATF filtering systems
and does not give a detailed traceability of testing
operations. Moreover, the current methods fail to
sufficiently meet the requirements related to the
immutable logging and secure analysis of the
attempts at evasion that are essential to forensic
analysis and regulatory compliance.
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Figure 1: Evolution from Traditional WAF Testing to Intelligent Blockchain-Integrated Framework.

Recent developments in blockchain technology
have shown that there is a great possibility of
improving security applications with immutable
record-keeping and distributed consensus protocols
[6]. Combining blockchain technology and
cybersecurity testing frameworks offers distinctive
prospects in the creation of impeccable audit tracks
and facilitates joint security research across
organizational borders. Nevertheless, the current
literature does mnot provide any extensive
frameworks that can be used to efficiently integrate
intelligent fuzzing with blockchain-based logging to
measure WAF.

Machine learning and artificial intelligence
techniques have shown remarkable success in
various cybersecurity applications, including
intrusion  detection, malware analysis, and
vulnerability assessment [7].

Using these technologies as the testing tool in
WAF is a good area of research that can be very
useful in improving the efficiency of the security
testing process. Using the idea of a machine learning
algorithm to generate payloads and to identify
patterns will allow security researchers to create
more advanced testing methodologies to keep up
with changing threat environments.

Our approach is based on the optimization of the
effectiveness of the payload to the following objective

function:

max Zn', fi(P), PeP

=] (1

where P constitute a payload vector, is the space
of all possible payloads, wi are weight coefficients,
and fi(P ) constitute various objective functions
included evasion probability, novelty score, and
damage potential.

The paper identifies the grave loophole in the
contemporary WATF testing practices through a pro-
posed intelligent fuzzing framework that
incorporates blockchain technology in the field of
secure logging and extensive analysis. We will
combine adaptive payload generation algorithm and
distributed consensus algorithm to develop a strong
platform to assess the WAF effectiveness. The
framework allows a security researcher to perform
systematic tests as well as keeping the traceability
intact and guaranteeing the integrity of the test
results with the help of cryptographic verification.

The main contributions of this study are as
follows: creation of intelligent payload generation
engine based on machine learning algorithms,
blockchain-based immutable logging of fuzzing
activities, creation of distributed consensus
algorithm to validate the result, creation of real-time
analytics dashboard to compare WAFs, automatic
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discovery of new evasion patterns, experimental
validation on a variety of WAF solutions, and

creation of standardized measures of WAF
effectiveness assessment.
2. RELATED WORKS
2.1. Web Application Firewall Testing
Methodologies

Traditional WAF testing approaches have

primarily focused on signature-based detection
mechanisms and rule-set validation procedures.
Kumar et al. [8] presented a comprehensive survey of
WAF testing methodologies, highlighting the
limitations of static testing approaches in detecting
sophisticated evasion techniques.

They found that the traditional testing strategies
can identify the presence of only 65-70% attack
vectors in the face of sophisticated attacks, which
shows that modern test systems have a considerable

potential to be enhanced. The success of the
traditional methods can be mathematically stated

k
D,
E traditional = £ T X 100 %
i=1 “%

Where Di represents detected attacks of type i, Ai
represents total attacks of type i, k is the number of
detected types of attack, and n is the total number of
attack types. Recent studies by Martinez and
Thompson [9] provided adaptive fuzzing techniques
to testing of web applications security.

Their method employed genetic algorithms to
evolve payload structures by responsiveness to
applications with better coverage than fuzzing
methods in previous studies. Nevertheless, their
structure was not full of logging mechanisms and
encountered the need to support the traceability
requirements required to achieve the forensic
analysis and the regulatory compliance.

Table 1: Comparison of Existing WAF Testing Frameworks.

Framework ML Blockchain Automation Traceability Consensus Year
Kumar et al. No No Partial No No 2023
Martinez-Thompson Yes No Yes No No 2024
Anderson et al. No No Yes Partial No 2023
Park et al. Yes No Yes No No 2023
Thompson-Davis Yes No Yes No No 2024
Our Framework Yes Yes Yes Yes Yes 2024

Anderson et al [10] work was devoted to the
development of standardized evaluation measures of
WAF effectiveness assessment.

They suggested a platform of comparative
analysis of the various WAF solutions through
common test suites. Though their methodology gave
a good insight into the nature of performance of a
WAF, it was based on manual testing methods and
lacked the ability to create intelligent payloads.

2.2. Machine Learning in Security Testing

In recent years, the combination of machine
learning methods with cyberspace testing has proven
to be quite promising [14].

Thompson and Davis [15] developed a machine
learning-based fuzzing framework that utilized
neural networks for intelligent test case generation.
Their approach achieved superior code coverage
compared to traditional fuzzing methods and
demonstrated the potential of Al-driven security
testing.

The network architecture of the neural network to
generate the payload can be illustrated as the

following transformation

h, = tanh(W}, h,_, + W;.x,

! ))(,l (3)

v =o(W,.hy + b)) (4)

Where h; represents the hidden state at time t, x;is
the input vector, y: is the output probability
distribution, W, Wy, and Wy are weight matrices,
and by, and by are bias vectors. Current studies Park
et al. [16] have done the research recently, specifically
on adaptive payload generation methods based on
reinforcement learning algorithms.

By having their framework adapt to the existing
testing campaigns and learn, as seen in table 1, how
to produce more effective attack vectors, they were
able to achieve better bypass rates against the
different security mechanisms. They only analyzed
the particular types of attacks, and thus, did not offer
comprehensive analytical capabilities. They are
summarized ml techniques in the table2.
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Table 2: Machine Learning Techniques in Security Testing.
Technique Application Accuracy Complexity Scalability

Neural Networks Payload Generation 89% High Medium
Genetic Algorithms Mutation Strategy 76% Medium High
Reinforcement Learning Adaptive Testing 84% High Low
Support Vector Machines Classification 82% Low High
Random Forest Pattern Recognition 78% Medium High

Deep Learning Sequence Generation 91% Very High Medium

Pattern recognition as the method of finding the
successful evasion strategies in web application
security testing was presented in the work by Kim
and Johnson [17]. Their machine learning-based
approach analyzed historical attack data to identify
patterns that enable successful bypasses of security
mechanisms. While their results were promising, the
framework lacked integration with systematic testing
procedures and secure logging mechanisms.

2.3. Blockchain Implementation in Cybersecurity

The concept of blockchain technology has
attracted a lot of interest in the area of cybersecurity
utilization, as its inherent qualities of immutability,
transparency and decentralization are natural. The
recent article by Wang et al. [11] projects focused on
application of blockchain technology in different
cybersecurity fields, such as intrusion detection,
auditing logs, and secure communication systems.
Their study showed that blockchain solutions offer a
better security assurance than other centralized
logging systems. Our blockchain implementation
using a cryptographic hash value is

H(B;) = SHA256(H(B;_,) || T; || N, || R,) (

1

)

Where H(B;) is the hash of block i, T; represents
transaction data, Ni is the nonce value, and R;
contains fuzzing results.

Secure audit logging with blockchain technology
is a recent topic that has received a lot of literature. A
blockchain-based secure-logging framework was
suggested by Chen and Liu [13] to provide
tamperproof logging in major infrastructure systems.
Their solution involved the use of smart contracts to
validate logs automatically, and showed that there
was a significant increase in the integrity of audit
trails. Nonetheless, their structure was not tailored to
the use of cybersecurity testing and lacked a closer
connection with fuzzing techniques.

Rodriguez et al [13] proposed a distributed
consensus mechanism of collaborative cybersecurity
studies, which was published in 2024 by Distributed
security [2]. This style allowed them to share threat
intelligence across organizational borders with

security and privacy of data and integrity. The
framework has shown good outcomes in supporting
collaborative security research, however, it lacked
particular demands to WAF testing and payload
analysis.

3. METHODOLOGY
3.1. Framework Architecture

Our Intelligent Vulnerability Testing Framework
(WAFS) proposes an intelligent WAF fuzzing frame-
work, which is based on six main elements, namely,
the Payload Generation Engine (PGE), the Fuzzing
Execution Module (FEM), the Blockchain Integration
Layer (BIL), the Analytics Dashboard (AD), the
Consensus Validation System (CVS), and the Pattern
Recognition Module (PRM).

The general architecture of the Intelligent
Vulnerability Testing Framework (WAFS) is
represented in the figure of the structure: The figure
2 depicts the data journey between the sources of
data and data analysis, starting with the Payload
Generation Engine (PGE) that produces machine
learning-designed test payloads. These payloads are
transferred to Vulnerability Test execution Module
(FEM) where the test is run on the firewall. The
products are subsequently combined with the
Blockchain Integrity Layer (BIL) to ensure
consistency and transparency.

This data is then transferred to the Conformance
Verification System (CVS) and then to the Pattern
Recognition Module (PRM) where evasion patterns
are detected. Lastly, the information is transferred to
the Analytics Dashboard (AD).

Surprisingly enough, the analytics dash- board
feeds into the payload generation engine in a loop so
that the framework would be capable of further
learning and automatically optimizing its efficiency.
The system architecture in general, enables a smooth
integration between the components and it is
modular and scalable.

The Payload Generation Engine is the main
intelligence element, which is powered by machine
learning algorithms to generate advanced attack
vectors. The engine uses three different generation
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strategies, namely, template-based mutation,
semantic-aware generation, and adversarial learning
methods. Every strategy is tailored to a particular

type of attack such as SQL injection, Cross-site
scripting (XSS) and command injection attacks.

Intelligent Web Application Fiuzzing Framework

Blockchain Integration Layer (BIL)

\

v

Payload
ML-Generated | _,| Generation | .| fuzing Consensus - Pattemn Analytics
Payloads PGE Engine Execution > Validation —»Recognition Module — Dashboard
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Fuzzing Results
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Figure 2: Evolution from Traditional WAF Testing to Intelligent Blockchain-Integrated Framework.

The payload generation has a mathematical basis
on the following optimization control

I’.,/»: argmax (E(P) - N(P)-D(P)) (6)

where P,y represents the optimal payload, is the
space of all possible payloads, E(P ) denotes the
evasion probability, N (P ) represents the novelty
score, and D(P ) indicates the damage potential of
payload P.

3.2. Theoretical Framework and Mathematical
Foundations

Our intelligent WAF fuzzing framework is
theoretically grounded on some mathematical
principles of optimization theory, machine learning,
and cryptography. The main goal is to make the most
of the payload generation in terms of how effective it
is and the integrity and traceability of all testing
processes.

Let W = wl,w2,..,wn be a set of Web Application Firewalls,and A
= al,a2,...,am be a set of attack vectors.The ef fectiveness function E
: [0, 1]represents the probability that attack vector ai successfully bypasses WAF wj.

The optimization problem for payload generation
can be formulated as a multi-abjective optimization

maximize fi(P)=E(w, P)

L(P)=N(P)

(P)=D(P)

subject to

|P | < Linax

C(P) < Cthreshold

where f1(P ) represents evasion probability, f2(P )
denotes novelty score, f5(P ) indicates damage
potential, s is the space of syntactically valid
payloads, Lyux is the maximum payload length, and
C(P ) represents computational complexity.

P € Puaia

3.3. Consensus Mechanism Theory

The system operates on the principles of
Byzantine Fault Tolerance (BFT) to guarantee that the
system is not disrupted by the failure or compromise

of up to =1 of the validator nodes in the system.

For a network of n validator nodes, the proposed
consensus mechanism achieves safety and liveness
properties if and only if n 3f + 1, where f is the
maximum number of Byzantine failures.

The proof follows from the fundamental
properties of BFT consensus algorithms. Safety is
ensured by requiring (f +1) honest nodes to agree on
any decision, while liveness is guaranteed by the
eventually synchronous network assumption and the
leader election protocol.

The consensus scoring function incorporates both
validator reputation and result confidence

Sconse[mw("') - Z:I - 5[ : ('l : ‘/I(r)
' WA 2

) l
Where Ri is the reputation score of validator i, Ci
is the confidence level, and Vi(r) is the validation
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result for record r.
3.4. Machine Learning Model Architecture

The neural network architecture for payload
generation employs a sequence-to-sequence model
with attention mechanisms

Q) <
Attention(Q. K, V) = softmax ( L‘{\ ) Vv
Vi

The encoder-decoder architecture processes input
attack templates and generates optimized payloads

hone = LSTM ety Bene)
¢, — Attention(Ree, Hope)
hjger — LSTM e ([e—1; €t} s Pider)

e — soltmax(Wohgee + b,)

3.5. Intelligent Payload Generation

The payload generation algorithm also uses a
multi-step method which involves using heuristic-
based mutations and machine learning-based
optimization. The first phase makes use of a complete
database of established attack patterns and

generative tasks. The network structure comprises of
several Long Short-Term Memory. Layers of (LSTM)
with attention mechanisms to learn complicated
patterns in successful evasion. techniques. The
Figures of the Neural Network Architecture are
given in Table 3. The training process uses past
fuzzing information to apprehend useful payload
structures and mutation patterns.
The LSTM cell state evolution is governed by

fr=0alW, [h_p.2]+b)
i — a(W; [hy 1] + )
Ce — tanh(We-[he 4,30 + he)
Oy — finCig + g a0y
oe=alW, (k2 ]=0b,)
he = 0W, [heorazel + by

iy = opetanh(Cy )

Where f;, it, and o are the forget, input, and
output gates respectively, C; is the cell state, and o
represents the sigmoid function.

Table 3: Neural Network Architecture Parameters.

signatures in order to determine baseline payloads. Laver Tvoe lumi eo] Activat o b
Intelligent mutations are then done on these baseline ayer Type |Unity/Nodes| Activation | Dropout | Parameters
payloads depending on historical success rates as Embedding 256 - 0.0 2,560,000
well as target WAF properties. LSTM-1 512 tanh 02 1,574,912
i i i LSTM-2 512 tanh 03 2,101,248
Algorithm 1: Enhanced Intelligent Payload Generation
Algorithm Attention 256 - 0.1 131,328
Initialize baseline payload database Dense-1 1024 RelLU 04 525,312
2: Load target WAF characteristics W
3: Initialize mutation strategies M = {m1, m2, ..., mn} Dense-2 512 ReLU 03 524,800
4: Load pre-trained neural network model N Output 10,000 softmax 0.0 5,120,000
5: Initialize genetic algorithm parameters {psize, pcross, pmut} Total . . . 12,537,600

6: for each attack categorization ¢ € {SQL, XSS, CMDi, LDAP,
XML} do

7: Select relevant payloads Pc € D

8: for each payload p € Pc do

9: psemantic = N(p, W) {Neural generation}

10: for each mutation strategy m € M do

11: p = m(psemantic, W)

12: Calculate fitness score £ (p') = wlE(p') + w2N (p') +
w3D(p)

13: if f (p') > Othreshold then

14: Add p' to candidate set

15: end if

16: end for

17 end for

18: Optimize candidate set using genetic algorithm

19: Apply adversarial training to enhance evasion
capability

20: end for

21: Validate generated payloads using cross-validation
22: return optimized payload set Popt

The machine learning part makes use of a
designed deep neural network structure. in sequence

3.6. Blockchain Integration Mechanism

The layer of integration with blockchains realizes
a permissioned blockchain network that is
specifically ~ designed. In  applications  of
cybersecurity research. The system employs the use
of a Proof-of-Authority (PoA) consensus mechanism
to enable quick transactions being processed without
compromising on security. Each fuzzing attempt is
stored as a blockchain transaction with detailed
metadata of the payload, target system, and result.

The blockchain data structure for each fuzzing
record is defined as follows

Record = {ID, Timestamp, Payloadnash, Targetw ar
HTTPresponse, Successag, Confidencescore, V
alidatorsignatures, Merkleproof }

Smart contracts are used to automate the process
of validation and storage so that everything is en-
sured.data stored is of predetermined quality and
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completeness. The logic of contracts enforces the
logic of multesy-signatures to ensure that records are
not modified without authorization and provides

cryptographic evidence of data. integrity. Figure 3
shows Fuzzing Record Storage Blockchain Structure.

Genesis Blook Block 1 Block 2
Haah:
[A random alphanumeric Provious Hash: Previous Hash:
string) vt [Tha hanh of the Genesin Block] - « ~ - [The hash of the Block 1)
Nonce

[a random number]

'
H{Block 0) -

Daota: Fuzzing Records

H{Mock 1) -

Data: Validation Results

L4

~ — H(Block 2)

Figure 3: Blockchain Structure for Fuzzing Record Storage.

Figure 3: Blockchain Structure for Fuzzing Record
Storage The following hash algorithm provides the
cryptographic integrity of every block

The following hash algorithm provides the
cryptographic integrity of every block

H(Bi)=SHA3-256(H(Bi~1) | | Ti| |Ni| |Mi| | oi)_(13)

Where H(B;) is the hash of block i, T; represents
transaction data, N; is the nonce value, M; contains
metadata, and oi represents validator signatures.

3.7. Consensus-Based Result Validation

In order to make the results of fuzzing reliable, a
distributed consensus mecha-nisma result validation
framework is used by the framework, demonstrated
in table 4. Various verifier nodes are involved in the
verification. process, cross tabulating results and
subjecting them to statistical validation to reject
possible false positives or anomalies. Consensus
algorithm makes use of the weighted voting
mechanism as following.

ConsensusScore(r) i=1 C

n
> w,
i=1

W,

Where wi represents the weight assigned to
validator i based on historical accuracy, vi is the
validation result from validator i, and ci is the
confidence score. A threshold consensus score
Bconsensus = 0.75 is required for result acceptance.

The validator weight adjustment follows an
exponential moving average:

wi(t + 1) = a -accuracyi(t) + (1 — a) -wi(t) — (15)

where a = 0.1 is the learning rate and accuracyi(t)

is the recent accuracy of validator i.

Table 4: Consensus Validation Parameters.

Parameter Value Description
Minimum Validators 5 Required for
consensus
Acceptance
Consensus Threshold 0.75 threshold
Timeout Period 30 Max1mur.n validation
time
Weight Decay 0.95 Validator weight
decay
Confidence Mimimam 06 Minimum confidence
score
Maximum retry
Retry Attempts 3 attempts

3.8. Analytics and Visualization Framework

The analytics dashboard gives real-time
representation of the fuzzing outcomes and in-depth
investi- gation. security researchers tools. The system
uses the best statistical analysis algorithms to detect.
tendencies in effective evasion strategies and
produce practical Justification to WAF development.
The framework computes various performance
values, such as evasion rates, false positive rates, etc.
score in coverage, and efficiency index. These
measures allow evaluating the effectiveness of WAF
in its entirety and comparing it with other
implementations, and the findings are shown in
figure 4.

The statistical significance of results is evaluated
using the following test:

A

titat = ——e— e (1l
st %
\m Tia

Where x 1 and x 2 are sample means, s2 and s2
are sample variances, and nl and n2 are sample sizes.
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Figure 4: WAF Evasion Rates across Different Solutions.

4. RESULTS AND DISCUSSION
4.1. Test Environment Setup

The operations of the test were performed in a
controlled laboratory setting with 20 test nodes
specially designed. with the same hardware specs to
have similar testing conditions. The hardware setup
was comprised of Intel-Xeon E5-2690 (2.9 GHz, 12
cores) CPU, 64GB of DDR4 memory, and 1TB of
NVMe. SSD storage capacity. The nodes were linked
onto a dedicated 10 Gbps Ethernet fabric to prevent

latency variations.

The computer platform was standardized across
all the nodes, in that Docker containerization stuff.
Each individual container was pre-packaged with
Ubuntu 20.04 LTS and Python 3.9, and practically all
the requirements to run the fuzzing framework, as
shown in Table 5. Oh and these were the seven
validator nodes running on the blockchain network.
The blockchain network comprised of 7 validator
nodes which apply Istanbul Byzantine Fault
Tolerance (IBFT) consensus algorithm.

Table 5: Testing Environment Specialist Expertise.

Component Specification Quantity
CPU Intel Xeon E5-2690 (2.9 GHz, 12 cores) 20 nodes
Memory 64GB DDR4-2666 20 nodes
Storage 1TB NVMe SSD 20 nodes

Network 10 Gbps Ethernet Switch + cables

oS Ubuntu 20.04.3 LTS Standardized
Container Runtime Docker 20.10.12 All nodes
Blockchain Validators IBFT Consensus 7 nodes
4.2. Dataset Construction attacks.

Table 6 explain how the generated payload
dataset was composed. It resulted in the
development of a full dataset of 50,000 distinct attack
vectors spread over five major attack categories. The
data set was well balanced such that it represented
the various adequately type and complexity of

Each payload received a complexity score based
on the following points to obscuration:
Complexityscore =W1 L+ W2 E+ w3 O + wy N 17)
where L represents length normalization, E denotes
encoding complexity, O indicates obfuscation level,
and N represents novelty factor, with weights wy =
0.2, w2=0.3, w3 =0.3, and w4 = 0.2.

Table 6: Generated Payload Dataset Composition.

Attack Type Basic Intermediate Advanced Novel Total
SQL Injection 4,620 6,890 4,320 2,670 18,500
Cross-Site Scripting 3,840 5,760 3,920 2,680 16,200
Command Injection 3,830 5,520 3,450 2,500 15,300
LDAP Injection 1,920 2,880 1,840 1,360 8,000
XML Injection 1,680 2,520 1,680 1,120 7,000
Total 15,890 23,570 15,210 10,330 65,000
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4.3. WAF Selection and Configuration

Twelve WAF solutions have been chosen and
evaluated, as shown in table 7, which is a wide cross-

section of commercial and open-source solutions. All
the WAFs were set up as per the standard
configuration recommended by the manufacturers
with activated default rule sets.

Table 7: Selected WAF Solutions for Evaluation.

WAF Solution Type Version Rule Set Configuration
ModSecurity Open Source 3.0.8 OWASP CRS3.3 Standard
Cloudflare WAF Commercial SaaS Proprietary Managed
AWSWAF Commercial v2 AWS Managed Standard
F5 BIG-IP ASM Commercial 16.1.0 F5 Signatures High Security
Imperva SecureSphere Commercial 14.5.0 Imperva Rules Default
NAXSI Open Source 13 NAXSI Rules Learning Mode
Shadow Daemon Open Source 211 Custom Rules Strict
Barracuda WAF Commercial 10.21 Barracuda Rules Medium
Fortinet FortiWeb Commercial 6.4.2 FortiGuard Standard
Citrix NetScaler Commercial 13.1 Citrix Signatures Balanced
Wallarm Commercial 44 ML-based Auto-learning
Sucuri CloudProxy Commercial SaaS Sucuri Rules Default

4.4. WAF Effectiveness Analysis

The comparative study of the WAF effectiveness
showed that there were a lot of differences between
the protection capabilities. across different solutions.
Commercial WAFs tended to be better performing
when compared to open-source solutions, and their
average evasion rates were 12.3% and 23.7% percent
respectively. Table 8 demonstrates the overall
analysis of various application firewall solutions
against cyber attacks. The findings indicate that there

are great differences in the degree of protection that
is offered with commercial solutions clearly doing
better in comparison to their open source
counterparts. Cloud flare has the highest overall
performance with evasion rate of 9.4% followed by
AWS WAF with 10.5% and finally comes Mod
Security with evasion rate of 11.7%. Conversely,
there are much higher evasion rates with open-
source solution with the worst performance of
Shadow Daemon of 25.3%.

Table 8: Comprehensive WAF Performance Analysis Results.

WAF Solution SQL XSS CMDi LDAP XML |Overall
ModSecurity 8.5% 11.2% 15.3% 12.7% 10.8%| 11.7%
Cloudflare 6.2% 9.8% 12.1% 8.4% 79% | 89%
AWS WAF 7.3% 10.5% 13.8% 9.7% 8.8% | 10.0%
F5 BIG-IP 5.8% 8.9% 11.4% 7.2% 6.8% | 8.0%
Imperva 4.9% 7.6% 10.2% 6.8% 6.1% | 71%
NAXSI 15.2% 18.7% 8.2% 22.1% 19.8%| 16.8%
Shadow Daemon 22.1% 25.4% 28.3% 24.6% 23.7%| 24.8%
Barracuda 9.1% 12.3% 14.7% 11.5% 10.2%| 11.6%
FortiWeb 7.6% 10.8% 13.2% 9.9% 9.1% | 10.1%
NetScaler 8.9% 11.7% 14.9% 12.3% 11.0%| 11.8%
Wallarm 6.8% 9.2% 12.6% 8.7% 81% | 91%
Sucuri 10.4% 13.6% 16.8% 14.2% 12.9%| 13.6%
Commercial Avg. 74% 10.4% 13.0% 9.9% 9.1% | 10.0%
Open Source Avg. 18.7% 22.1% 18.3% 23.4% 21.8%| 20.9%

The statistical analysis showed that there were
high differences between commercial and open-
source solutions in all types of attacks (p < 0.001 by
Mann-Whitney U test). Some of the open-source
solutions, however, showed very high results in

certain categories of attacks, most notably NAXSI in
command injection detection with an evasion rate of
just 8.2% percent. The comparison of performance of
commercial vs open source WAF against the attack
type is shown in figure 5.
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Figure 5: Comparison of Commercial vs Open Source WAF Performance by Attack Type.

4.5. Machine Learning Performance Evaluation

The smarter generation engine of payload was
proved to be very better than the conventional
fuzzing approaches. The generation strategies of the
machine learning were found to be 34% percent more
successful in detection of bypass than the random

strategies of payload generation. This optimization
process led to an extra 18% percent increase in
payload effectiveness because of the genetic
algorithm optimization. Table 9 describes in-depth
performance indicators of the various ML elements
of the proposed framework.

Table 9: Detailed ML Efficiency Metrics.

Attack Category Precision Recall F1-Score Accuracy AUC-ROC TI:F;II::g
SQL Injection 0.91 0.87 0.89 0.88 0.92 4.2 hrs
Cross-Site Scripting 0.94 0.89 0.92 0.91 0.95 3.8 hrs
Command Injection 0.87 0.84 0.85 0.85 0.89 3.5 hrs
LDAP Injection 0.83 0.79 0.81 0.81 0.85 2.1hrs
XML Injection 0.88 0.85 0.86 0.86 091 1.9 hrs
Average 0.89 0.85 0.87 0.86 0.90 3.1 hrs

Figure 6 depict the elements of the neural network
that demonstrated excellent predictive quality of
payload efficacy with precision scores that range
between 0.83 to 0.94 among various categories of

attacks. The system managed to isolate 347 bypass
techniques that had not been known before and these
were later verified manually.
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Figure 6: Neural Network Training Progress.

4.6. Blockchain Performance Analysis

The performance characteristics of the blockchain
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integration layer displayed great performance traits
during the testing phase that was projected in table
10. The mean time to process the transaction was
2.3% seconds and 99.8% percent of transactions took
place within 5 seconds. The blockchain integration
storage overhead constituted only 3.2% of all
resources in the system, and it was an efficient
implementation.

Table 10: Blockchain Performance Metrics.

Metric Value Standard Deviation
Average Transactlon 2.3 seconds +0.7 seconds
Time
99th Percentile Time 4.8 seconds +1.2 seconds
Throughput 450 TPS +23 TPS
Storage Overhead 3.2% £0.4%
Network Bandwidth |15 4 \p rhour +2.1 MB//hour
Usage
CPU Utilization 8.7% +1.9%
Memory Usage 2.1GB 0.3 GB
Consensus Time 1.8 seconds +0.5 seconds
Block Size 4.2 MB +0.8 MB

Figure 7 shows the consensus mechanism with
100% agreement on validation of the results in all the
test scenarios without cases of false consensus and a
disagreement in the results. In the course of the, the
cryptographic verification process identified and
averted three attempted data tampering cases.

460

440

430

Transactions per Second

0 5 10 15 20 25
Tume (bows)
Figure 7: Blockchain Transaction Throughput Over
Time.

4.7. Pattern Recognition Results

The automated pattern recognition algorithm
successfully identified 47 distinct evasion patterns
across the tested attack categories. The analysis
revealed that 73% of successful bypasses utilized
encoding- based evasion techniques, while 19%
employed syntactic obfuscation methods. The
remaining 8% uti- lized novel techniques not
previously documented in existing literature.Table
11 provides a detailed classification of evasion
patterns detected by the developed intelligent
system, showing the success rates and frequency of

each category. Encryption-based technologies
(Encoding-based) clearly dominate the scene with a
success rate of 73% and a frequency of 347 cases,
underscoring the fundamental weakness of
encryption detection mechanisms in most traditional
WAF solutions. Grammatical obfuscation tech-
niques rank second with a success rate of 19% and 91
cases, and are techniques that rely on modifying the
grammatical  structure of attacks  without
compromising their harmful function.

Table 11: Comprehensive Evasion Pattern Analysis.

Evasion Success Frequenc Avg. Detection
Technique Rate 9 Y Complexity Time
URL Encoding | 73.2% 347 21 0.23s
HIML Entity |- g 9/ 298 18 0.19s
Encoding
Unicode 71.4% 276 24 0.31s
Normalization
Case Variation | 65.7% 234 13 0.15s
Comment | ¢, 10, 189 27 0.285
Insertion
String o
Concatenation 58.9% 167 31 0.35s
Alternative | - 55 50/ 145 38 0.425
Syntax
Whitespace | 5 70 | 53 29 0.265
Manipulation
Keyword N
Substitution 48.2% 109 42 0.51s
Logic Operator | 1) ¢o, 91 47 0.58s
Confusion
Novel 39.1% 78 53 0.73s
Techniques = ’ ’

Pattern analysis discovered a number of
undocumented evasion methods that were later
confirmed wusing manual verification. These
discoveries were used to create better detection
signatures, as well as better WAF rule sets.
Distribution Analysis of Successful Application
Firewall Evasion Techniques A statistical analysis of
successful evasion techniques as in Figure 8
demonstrates that there is a definite and significant
distribution in the effectiveness of the various
techniques applied to overcome application firewall
protection mechanisms. The dominance of the scene
is the URL encoding methods that give a high
percentage of 73.2% of successful bypasses, which
indicates the high shortcoming of current WAF
solutions that failed to detect and deal with advanced
coded attacks. Syntactic obfuscation methods are
second with 19.1%. These methods alter the form of
malicious code and leave the main functionality
intact. This complicates their detection by old
fashioned systems which rely on fixed signatures. A
total of 7.7 percent of successful cases take into
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consideration new techniques. It is a minor yet
important percentage, since they are ways that had
not been identified previously, identified by the
machine learn- ing algorithms in the proposed
framework. This distribution indicates that there is a
need of improved methods of detection which extend

beyond the traditional methods and concentrate on
different methods of encryption. It also highlights the
need to update databases and signatures on a routine
basis in order to match emerging technologies of
cyberattacks.

Analysis of Successful Evasion Techniques Against WAFs

Rovel Techniques (7,7%)

4.8. Comparative Analysis with Existing
Frameworks

As present in table 12 a comprehensive
comparison with existing WAF testing frameworks

Syntactic Obfuscation (19.1%)

URL Encogeng (73.7%)
Figure 8: Distribution of Successful Evasion Techniques.

demonstrated the superior performance of our
intelligent approach. The framework achieved
significant improvements in detection accuracy,
processing speed, and result reliability compared to
traditional methods.

Table 12: Framework Comparison Results.

Framework Detection Rate False Positives Processing Speed Traceability Autf:::i‘lon
Traditional Fuzzing 67.3% 23.4% 1.2k payloads/hour Low 30%
ML-based (Park et al.) 78.1% 18.7% 2.8k payloads/hour None 75%
Genetic Algorithm (Martinez) 74.6% 20.2% 2.1k payloads/hour Partial 65%
Our Framework 89.7% 8.3% 4.7k payloads/hour Complete 95%

4.9. Implications for WAF Security

The experimental findings show that WAF is
susceptible to a wide range of implementations and
attack vectors. The high performance of commercial
solutions could be explained by some factors reasons,
such as specialized security research departments,
frequent updates of the rules, and sophisticated
machine learning implementation. Nevertheless, the
research also determined certain areas, in which the
open- source solutions perform better, which is
especially useful in identifying attacks of command
injection.

The discovery of 347 novel methods of bypassing
the system highlights the dynamic characteristics of
web application attacks and the need to constantly

adjust security provisions. Such results carry
significant implications to both the vendors of WAF
and security practitioners, indicating that more
complex detection algorithms and updates of the rule
set should be undertaken.

The mathematical model of the association
between the complexity of payloads and the evasion
success may be stated as follows:

1

1 L e‘-iﬂ'Ccu.;hr._._j‘-\'u-—x_\ _7"Rn.k~'

Psxm - (18)
Where a, B, and y are empirically derived
coefficients, Ceomplexity represents payload complexity,
Nrovelty denotes novelty score, and Riules indicates
rule set comprehensiveness.
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4.10. Blockchain Integration Benefits previous tech- niques of testing WAF are overcome
in the proposed system by introducing machine
learning-based payload generation, distributed
consensus validation, and an audit that cannot be
changed.

A set of experimental testing of 12 WAF solutions
with more than 50,000 test payloads has shown the
efficiency of the framework in identifying security
vulnerabilities and emerging bypass methods. The
detection rate of the smart testing methods is 34
percent higher than the conventional method, which
ensures that the smart testing methods are more
effective. The blockchain integration level, with
perfor- mance qualities being efficient, was able to
provide tamper-proof logging capability.

Future research directions comprise:
Generalization to more attack types, such as XXE,
SSRF, and deserialization vulnerabilities, adding
5. CONCLUSION AND FUTURE WORK threat intelligence feeds to keep up with the latest
attack patterns, Automated remediation, using what
attack patterns are identified, and Federated
Learning Approaches to Improve Collaborative
Model Learning,.

There are various essential benefits of the
blockchain integration layer compared to
conventional logging systems. The ascertained
nature of the blockchain records means that all the
testing activities are audit and verifiable, which meet
the compliance requirements in the regulatory
industries. The distributed consensus method
removes points of failure and unauthorized
manipulation of test results.

The economic incentive model for validator
participation follows

Rvalidator(i) =a -Ai +B Ql -Y -Ei (19)

Where Ryaiidator(i) is the reward for validator i, Ai
represents accuracy score, Q; denotes quality of
validation, and E; indicates computational effort
expended.

In this paper, we presented an intelligent WAF
fuzzing framework, which encompasses a
blockchain- based secure logging and thorough
analysis of payload evasions. The shortcomings of
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