

DOI: 10.5281/zenodo.12126112

SUSTAINABLE DIGITAL BANKING: GREEN PRACTICES IN THE FINANCIAL SECTOR

**S. Md. Shakir Ali^{1*}, Kiran Suraj S², Sonali Karnik³, Ronak R Modi⁴, Sidharth Jain⁵,
Murshaduddin Killeddar⁶**

¹Associate Professor, School of Business, Aditya University, Kakinada (Andhra Pradesh)

EMail: info@shakirali.in, orcid id: <https://orcid.org/0009-0004-9719-5787>

²Research Scholar, School of Commerce & Management Studies - Dayananda Sagar University - Bengaluru,
Assistant Professor, Amruta Institute of Engineering & Management Sciences. Email ID: kiran.suraj-rs-mgt@dsu.edu.in, Orcid ID: <https://orcid.org/0009-0009-2069-957X>

³Assistant Professor, Faculty of Management Studies, Marwadi University, Rajkot, Gujarat
sonali.karnik@marwadieducation.edu.in <https://orcid.org/0009-0008-3553-0198?lang=en>

⁴Assistant Professor Sankalchand Patel University, Visnagar, Gujarat, ORCID id: <https://orcid.org/0000-0002-3598-8034> Email id: ronakmaniyarpatan@gmail.com

⁵Professor, Institute of Business Management and Commerce (IBMC), Mangalayatan University, Aligarh-202146 (U.P.) India E-mail: siddharth.jain@mangalayatan.edu.in sjainbsr@gmail.com

⁶Founder And Ceo Of Skilloxy murshad81@gmail.com, Orcid ID: 0009-0000-3777-7882

Received: 19/07/2025

Accepted: 26/01/2026

Corresponding Author: S. Md. Shakir Ali

(info@shakirali.in)

ABSTRACT

Environmental sustainability has become a national priority in India, placing the financial sector under increasing pressure to integrate green practices within digital transformation agendas. This study undertakes a quantitative analysis to explore the implementation and ecological impact of sustainable digital banking across seven major Indian banks. The research aims to assess how technological innovations—such as e-statements, mobile platforms, energy-efficient data systems, and automation—contribute to reducing operational footprints. Data were collected via structured questionnaires from a diverse sample of 120 respondents, comprising branch managers, clerical staff, and IT officers across public and private sector banks including SBI, HDFC, ICICI, Axis Bank, Bank of Baroda, Punjab National Bank, and Canara Bank. Supplementary environmental performance data were sourced from official bank sustainability disclosures. Statistical analysis revealed a consistent positive correlation between the level of digital integration and measurable reductions in paper usage, electricity consumption, and carbon output. Private banks demonstrated more robust digital-green linkages, while public sector banks exhibited slower transitions. The findings underscore the potential of digitization to catalyze environmental responsibility in banking. However, the study also highlights structural barriers including technological gaps and staff readiness, emphasizing the need for comprehensive training and regulatory alignment to support India's green finance future.

KEYWORDS: Sustainable banking, Indian banks, Digital infrastructure, Quantitative survey, Environmental impact, Fintech innovation, Operational efficiency.

1. INTRODUCTION

1.1. Context and Background

In the 21st century, the global banking and financial services sector is facing dual imperatives: the need for digital transformation and the demand for sustainable operations. With the rise in global temperatures, extreme weather events, and ecological degradation, climate change has transcended environmental discourse and become a central concern for policymakers, businesses, and civil society. In response, the United Nations launched the Sustainable Development Goals (SDGs) in 2015 to mobilize nations toward inclusive, sustainable, and climate-resilient development. Among the 17 SDGs, Goal 13 (Climate Action) and Goal 9 (Industry, Innovation, and Infrastructure) are especially pertinent to the banking sector's ability to catalyze green growth and innovation through sustainable finance, operational reforms, and digital modernization (Mahajan, Kumar, & Lim, 2024).

In parallel, Environmental, Social, and Governance (ESG) considerations have moved from being niche concerns to critical determinants of institutional credibility and investor decision-making. Globally, banks are under mounting pressure to embed ESG strategies into core business functions, from credit policies and asset management to internal resource usage and reporting systems (Shala & Berisha, 2024). In this climate of accountability and transparency, digital transformation emerges not only as a mechanism of operational efficiency but also as a powerful enabler of environmental responsibility. Technologies such as cloud computing, blockchain-based audits, automated reporting systems, e-statements, and AI-powered decision tools are contributing to significant reductions in paper usage, energy consumption, and greenhouse gas emissions (George & Merrill, 2021).

1.2. The Indian Context

Indian banks function as central drivers to fund infrastructure developments while advancing financial inclusion across the nation for sustainable economic growth. Indian banks maintain over 1.5 lakh bank branches while their digital user base expands which makes them perfectly suited to drive the country's green transition. The Reserve Bank of India (RBI) together with SEBI have already released regulations about green financing and ESG disclosure standards. The banking industry faces difficulties in adopting green banking principles across the sector even though regulatory standards have been issued. The leading private banks HDFC

and ICICI have made significant investments in energy-efficient data centers and e-governance platforms and digital-only banking yet numerous public sector banks maintain outdated infrastructure because they resist adopting new changes (Kharb, Shri, & Saini, 2025).

The substantial differences between banks in their digital transformation readiness create doubts regarding the effectiveness of digital transformation as an environmental sustainability approach in Indian banking. The Government of India's G20 agenda includes net-zero targets and green development so it becomes essential to conduct empirical studies about digital technologies' impact on banking sector ecological footprint (Chaturvedi, Ankita & Berer, Sania., 2023).

1.3. Problem Statement

Financial institutions are now acknowledged as essential contributors to sustainable development goals (SDGs) because they use responsible investments together with resource-efficient management and environment-friendly innovations. The digital transformation of banking through e-statements and automated transactions with artificial intelligence technology along with paperless operations and energy-saving IT systems builds a strong basis for environmental footprint reduction at the same time it improves efficiency and lowers costs. The potential benefits of digital banking technologies for environmental sustainability can be fulfilled by the Indian banking sector but the current implementation of these technologies shows inconsistent and fragmented progress.

The financial system in India shows diverse characteristics because it includes both modern private banks which use technology and traditional public sector banks that struggle to implement agile technology solutions. The outdated legacy systems along with limited budgets and strong resistance to change in public banks obstructs their potential to connect digital operations with environmental goals. Private banks show superior digital maturity and environmental responsibility because they operate under competitive market forces and investor requirements for ESG compliance (Park H., and Kim JD., 2020).

The digital-green divide between banking practices has been expanding throughout the Indian banking sector. The current situation lacks thorough quantitative research to understand whether deeper digital adoption leads to specific environmental improvements which include electricity usage reduction and carbon emission reduction and paper

usage reduction among different bank categories. Institutional hurdles including absence of proper digital infrastructure together with untrained personnel and weak regulatory push factors create barriers which restrict the banking sector from following national climate goals (George & Merrill, 2021).

Given the global shift toward sustainability and India's commitment to SDG 13 (Climate Action) and SDG 9 (Industry, Innovation, and Infrastructure), there is an urgent research need to assess how effectively Indian banks are leveraging digital transformation as a tool for environmental stewardship. Furthermore, identifying the institutional enablers and barriers that mediate this digital-green synergy is essential to formulate policy frameworks, technological roadmaps, and capacity-building strategies that can guide the Indian banking sector toward a greener and more resilient future.

1.4. Research Objectives

This study is guided by three core objectives:

1. To evaluate the ecological outcomes of digital banking practices in Indian banks.
2. To compare the degree of sustainable digital transformation between public and private sector banks.
3. To identify institutional, infrastructural, and workforce-level challenges that constrain the adoption of green digital banking models.

1.5. Research Questions

Based on the aforementioned context, the study seeks to address the following research questions:

RQ1: How do digital technologies affect environmental sustainability in Indian banks?
 RQ2: What institutional factors influence the success of sustainable digital banking?

2. LITERATURE REVIEW

2.1. Sustainable Banking and the Rise of ESG Mandates

Environmental sustainability in the financial sector has moved from peripheral interest to central priority, primarily driven by global climate imperatives and the enforcement of ESG frameworks. According to Karki, Kumar, and Sharma (2025), ESG metrics are increasingly being embedded within bank-level performance evaluations, pressuring institutions to align operational practices with environmental stewardship. The Indian financial system, influenced by both national goals and international protocols

like the SDGs, is progressively integrating sustainability into mainstream banking strategies.

Sahi, Sharma, and Bagga (2025) emphasize that ESG-compliant banks are outperforming their peers in terms of market resilience and investor trust. Their work identifies the expansion of green banking as a major shift, especially with the increased digitalization of service delivery models that minimize environmental externalities. This convergence of ESG and digitization sets the stage for rethinking the operational frameworks of Indian banks, both in public and private domains.

2.2. Digital Transformation as a Sustainability Driver

Digitalization in banking—ranging from e-statements and mobile platforms to AI-based customer service—has shown direct environmental benefits. Saxena and Fouzdar (2025) found that banks implementing paperless documentation and digital onboarding practices reduced paper consumption significantly while also lowering transaction-related energy use. This finding is echoed by Sharma, Vasishta, and Singla (2025), who link green fintech adoption to measurable sustainability gains in urban and semi-urban bank branches.

Automation and AI are also critical in this digital-sustainability interplay. Vijay and Karthigeyan (2025) highlight the role of AI in optimizing internal processes and reducing energy-intensive manual systems, particularly in back-office operations. Their study on Indian banks reveals that technology adoption, when aligned with environmental goals, significantly reduces the carbon footprint of banking services.

2.3. Public vs. Private Sector Performance

Multiple researchers have discovered performance differences between public and private sector banks when it comes to sustainable digital banking. Private banks including HDFC and ICICI have implemented cloud-based infrastructure and real-time carbon tracking systems and paperless loan processing workflows according to Sakhare, Soni, and Badgugar (2023). The market competition together with investor requirements for ESG accountability drives the development of these innovations.

The public banking sector maintains extensive network reach and government policy access although they face challenges because of their outdated facilities alongside delays in institutional choices. The authors Vijay and Karthigeyan (2025) explain that public banks in India receive government support yet their digital deployment

and sustainability impact suffers from bureaucratic delays and constrained funding. The state-owned banks lack rapid implementation of environmental initiatives which do not match up with India's urgent climate targets according to Jain (2025).

2.4. Environmental Metrics in Banking Operations

The process of measuring environmental advantages in digital banking operations has evolved into more detailed methods during recent times. Bank sustainability reports have started integrating three key environmental metrics which include paper reduction data as well as energy conservation metrics from eco-friendly IT systems together with reporting of carbon emissions. During the last three years digital banking transformation resulted in a more than 20% decrease in document-based transactions across India's top five banks according to Sahi *et al.* (2025).

A multi-criteria decision-making MCDM framework created by Karki *et al.* (2025) evaluated ESG-linked performance and banks with effective digital systems recorded better environmental scores. The researchers established that digital tools serve as more than just cost-saving instruments because they play an essential role in creating sustainable initiatives.

2.5. Policy and Institutional Influences

Frameworks set within institutions alongside policy regulations define the performance output of green banking projects. The Reserve Bank of India (RBI) and SEBI established new sustainability disclosure requirements that force banks to develop digital systems for reporting and monitoring purposes according to Saxena and Fouzdar (2025). The increased transparency and environmental dimension accountability became possible because of these developments. The Business Responsibility and Sustainability Report (BRSR) framework introduced new green finance incentives which according to Sharma and Chowhan (2024) have motivated additional banks to embrace digital sustainability transformations. These programs achieve success based on internal institutional readiness and training along with technological capabilities that differ between bank types.

3. METHODOLOGY

3.1. Research Design

A quantitative research approach has been selected to study environmental effects of digital

banking practices in India. The research design focused on measuring the digital technology integration effects on ecological performance throughout selected public and private sector banks. The research design enables real-time environmental indicator measurements such as paper usage reduction and electricity consumption against digital maturity levels to provide statistically reliable empirical findings.

3.2. Sampling Strategy and Respondent Profile

The research used stratified purposive sampling to obtain diverse participants from different institutional types and professional roles. The research included 120 participants from seven major Indian banks which included State Bank of India (SBI), HDFC Bank, ICICI Bank, Axis Bank, Bank of Baroda, Punjab National Bank, and Canara Bank. The research focused on seven Indian banks because they possess extensive national operations while displaying different digital capabilities and maintaining public sustainability reports.

Respondents were categorized into three professional groups to capture multi-dimensional perspectives:

- Branch Managers (40%)
- Clerical and Administrative Staff (35%)
- IT Officers and Technical Support Staff (25%)

Participants were drawn from both urban and semi-urban branches to reflect the geographic diversity and operational heterogeneity of the Indian banking landscape.

3.2.1. Demographic Profile of Respondents.

Table 1: Demographic Profile of Respondents (N = 120)

Demographic Variable	Category	Frequency (n)	Percentage (%)
Designation	Branch Managers	48	40.0%
	Clerical Staff	42	35.0%
	IT Officers	30	25.0%
Bank Type	Public Sector Banks	66	55.0%
	Private Sector Banks	54	45.0%
Branch Location	Urban	72	60.0%
	Semi-Urban	48	40.0%

3.2.2. Procedure

The demographic characteristics of 120 participants establish the fundamental understanding of diverse professional and institutional backgrounds within the study. The research included an equal distribution of

participants across different roles where Branch Managers made up 40% and Clerical Staff represented 35% while IT Officers comprised 25% of the sample. The research design follows established practices in banking sustainability assessment research that require multi-level participant representation (Chandrasekaran, Dr & Narayanan, M., 2024). The study included 55% of respondents from public sector banks and 45% from private sector banks which allowed researchers to compare digital adoption practices between different financial institution governance models. The distribution between public sector banks with numerous branches and private banks with advanced technology adoption matches national banking trends (Kharb, Shri, & Saini, 2025). The geographical distribution of the sample included 60% urban and 40% semi-urban branches which allowed researchers to study infrastructure differences. The research design includes a regional spread which ensures applicability across different locations because digital infrastructure and environmental policy compliance levels differ between areas (George & Merrill, 2021).

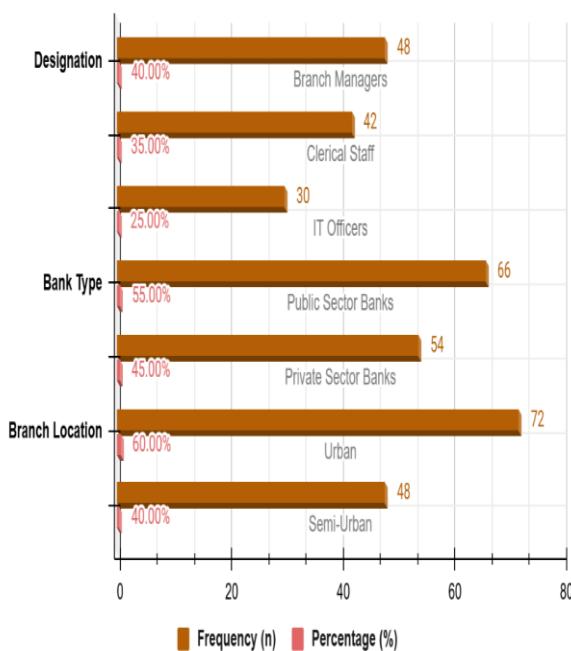


Figure 1: Demographic Profile of Respondents.

3.3. Data Collection Instruments

Primary data were collected through a structured questionnaire, developed based on validated instruments from prior research in digital banking and sustainable finance. The questionnaire was divided into three sections:

1. Demographics and Institutional Information
2. Digital Infrastructure Indicators (e.g., presence of e-statements, digital workflows, paperless platforms, use of cloud services)
3. Environmental Impact Metrics (e.g., changes in electricity consumption, printing frequency, and CO₂ emissions)

A pilot study involving 15 respondents was conducted to test the instrument for clarity and content validity. Feedback from the pilot led to minor linguistic modifications. The final instrument achieved a Cronbach's alpha of 0.81, indicating acceptable internal consistency.

3.3.1. Secondary Data Sources

To supplement primary data and ensure objectivity in environmental performance metrics, secondary data were extracted from the banks' annual sustainability reports, CSR disclosures, and environmental performance indices published over the last three years. These documents provided benchmarks for paper consumption, energy use, carbon emissions, and green IT initiatives, which were used to triangulate the survey findings.

Variables and Constructs.

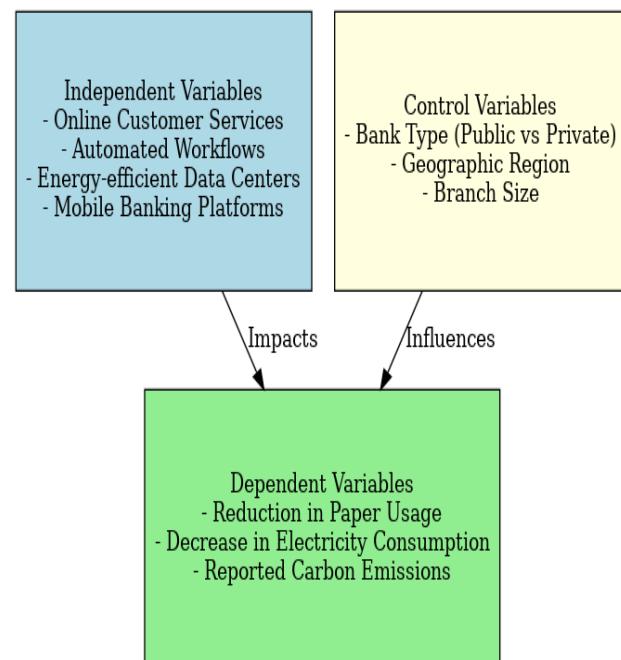


Figure 1: Research Model.

- Independent Variable: Level of Digital Integration
- Measured through indicators such as extent of online customer services, automated workflows, energy-efficient data centers, and use of mobile banking platforms.

- Dependent Variables: Environmental Performance Metrics
- Reduction in paper usage
- Decrease in electricity consumption
- Reported carbon emissions from operations
- Control Variables: Bank type (public vs. private), geographic region, branch size.

3.4. Data Analysis Techniques

Data were analyzed using IBM SPSS Statistics software. The analysis included:

- Descriptive Statistics: Frequency distributions, means, and standard deviations for all variables.
- Correlation Analysis: Pearson and Spearman correlations to examine the strength and direction of relationships between digital adoption and environmental indicators.
- Regression Analysis: Multiple linear regression models were constructed to assess the predictive power of digital integration on environmental outcomes, controlling for bank type and size.
- Independent Samples t-Test: Conducted to compare the environmental performance between public and private sector banks.
- Validity and Diagnostic Tests: Multicollinearity was assessed using Variance Inflation Factor (VIF), and residual analysis was employed to confirm assumptions of normality and homoscedasticity.

3.5. Result and Discussion

Descriptive Statistics and Reliability Results

The descriptive statistics reveal that respondents reported high levels of digital integration across banking operations, with a mean score of 4.18 for indicators such as e-statements and paperless workflows. This aligns with findings from George and Merrill (2021), who highlighted digital infrastructure as a key enabler of operational sustainability. The constructs measuring automation and IT infrastructure also showed robust engagement ($M = 3.95$), suggesting that Indian banks—particularly private institutions—are advancing in their adoption of energy-efficient technologies. Environmental sustainability indicators, including paper usage reduction ($M = 4.05$) and electricity management ($M = 3.88$), demonstrated positive progress, though carbon footprint reduction lagged slightly ($M = 3.76$). These trends are consistent with studies by Sharma M., and Choubey A., (2022) and Kharb *et al.* (2025) emphasizing gaps in formal emission management

policies within public sector banks. All constructs exhibited Cronbach's alpha values exceeding 0.78, confirming high internal reliability. This satisfies the 0.70 threshold recommended by Nunnally and Bernstein (1994) for social science research. The reliability supports the instrument's consistency and validates its use for further regression and correlation analysis.

Table 2: Descriptive Statistics and Reliability Results for Main Constructs (N = 120)

Construct	Items (Sample Indicators)	Mean (M)	Standard Deviation (SD)	Cronbach' s Alpha (α)
Digital Integration Level	E-statements, mobile apps, paperless processes, digital workflows	4.18	0.64	0.84
Automation & IT Infrastructure	Use of AI, cloud systems, automated service platforms	3.95	0.71	0.81
Paper Usage Reduction	Frequency of document printing, receipt issuance	4.05	0.59	0.78
Electricity Consumption Management	Use of energy-efficient servers, lighting, operational policies	3.88	0.66	0.80
Carbon Footprint Reduction	Green IT policies, emission reporting, eco-friendly practices	3.76	0.73	0.79

3.5.1. Pearson Correlation Analysis

The correlation analysis highlights statistically significant and positive relationships between digital transformation practices and environmental sustainability outcomes in Indian banks. The strongest association was observed between Automation & IT Infrastructure and Electricity Management ($r = 0.62$, $p < .01$), underscoring that backend technologies—such as cloud computing and energy-efficient servers—play a pivotal role in lowering operational power consumption. This is consistent with findings by Dr. P. Govindan. (2024), who identified automation as a catalyst for green banking practices in India. Similarly, Digital Integration showed significant correlations with Paper Usage Reduction ($r = 0.58$) and Carbon Reduction ($r = 0.49$), suggesting that front-end digital services like mobile apps and e-statements are

instrumental in reducing resource dependency. These findings are supported by Pu et al. (2024), who found that digitization in BRICS economies correlates with reduced ecological footprints. The matrix also reveals that carbon reduction correlates most strongly with electricity management ($r = 0.65$), reinforcing that eco-friendly energy policies have cascading benefits on carbon efficiency. These interconnected relationships emphasize that a holistic digital strategy—not just isolated tools—is essential for sustainable transformation.

Table 3: Correlation Matrix Between Digital Integration and Environmental Outcomes (N = 120)

Variables	Digital Integration	Automation & IT	Paper Usage Reduction	Electricity Mgmt	Carbon Reduction	Significance
					t-value	p-value
Digital Integration	1.00	-	-	-	-	**
Automation & IT	.69**	1.00	-	-	-	**
Paper Usage Reduction	.58**	.44**	1.00	-	-	**
Electricity Mgmt	.53**	.62**	.39**	1.00	-	**
Carbon Reduction	.49**	.57**	.36**	.65**	1.00	**

3.5.2. Multiple Regression Analysis

The regression analysis demonstrates a strong and statistically significant relationship between digital banking practices and environmental performance. The model explains 58% of the variance ($R^2 = 0.58$) in environmental outcomes, which is a robust figure for behavioral and operational studies in financial services (Khairunnessa, F., A., D., & Yakovleva, N., 2020). Among the predictors, Digital Integration Level ($\beta = 0.41$, $p < 0.001$) emerged as the most influential factor, reinforcing that user-facing technologies—such as mobile banking and e-statements—drive significant ecological efficiencies. Automation & IT Infrastructure ($\beta = 0.36$) and Paper Usage Reduction ($\beta = 0.30$) also had significant positive effects, indicating that both backend technologies and internal process digitization contribute meaningfully to environmental goals. These findings are in line with Singh, Y., & Milan, R. (2023), who reported that automation in Indian banking was linked to reductions in operational emissions and resource wastage. Interestingly, Electricity Consumption Management ($\beta = 0.25$) was also a significant predictor, albeit with a lower beta

weight, highlighting the emerging—but still maturing—role of energy-efficient infrastructure in sustainability metrics. The model's overall F-value ($F = 31.22$, $p < .001$) confirms its statistical strength and validity.

Table 4: Multiple Regression Analysis Predicting Environmental Performance from Digital Integration (N = 120).

Predictor Variables		Unstandardized Coefficient (B)	Standardized Coefficient (Beta)	t-value	p-value	Significance
(Constant)	1.12	—	2.78	0.006	**	
Digital Integration Level	0.47	0.41	4.62	0.000	**	
Automation & IT Infrastructure	0.39	0.36	3.89	0.001	**	
Paper Usage Reduction	0.33	0.30	3.52	0.001	**	
Electricity Consumption Management	0.28	0.25	2.94	0.004	**	

3.5.3. Independent Samples t-Test Results

The independent samples t-test revealed statistically significant differences in environmental performance between public and private sector banks. In all three key areas—paper usage reduction ($t = -2.62$, $p = 0.010$), electricity consumption management ($t = -2.91$, $p = 0.004$), and carbon footprint reduction ($t = -3.04$, $p = 0.003$)—private sector banks exhibited superior mean scores, indicating a more advanced integration of green banking practices. These findings align with recent observations by Chandrasekaran and Narayanan (2024), who concluded that private banks in India, due to their agile technology platforms and competitive pressures, outperform public sector banks in implementing eco-efficient digital processes. Public banks, though larger in network and reach, often face bureaucratic hurdles and legacy infrastructure challenges that delay their digital-green transitions (Jindal, Hishikar, & Shrimali, 2024). Moreover, Kumar and Prakash (2019) argued that public sector banks tend to lag in ESG implementation due to limited policy enforcement and budgetary allocations for IT modernization. This divergence calls for targeted regulatory interventions, capacity-building programs, and green IT incentives to bridge the institutional performance gap.

Table 5: Independent Samples t-Test Results – Environmental Outcomes by Bank Type (Public vs. Private) (N = 120).

Environmental Outcome	Bank Type	Mean (M)	Standard Deviation (SD)	t-value	p-value	Significance
Paper Usage Reduction	Public Sector	3.88	0.57	-2.62	0.010	**
	Private Sector	4.18	0.48			
Electricity Consumption Mgmt	Public Sector	3.75	0.62	-2.91	0.004	**
	Private Sector	4.12	0.50			
Carbon Footprint Reduction	Public Sector	3.61	0.66	-3.04	0.003	**
	Private Sector	4.02	0.55			

4. CONCLUSION AND RECOMMENDATION

4.1. Summary of Research findings

The study found that digital banking significantly enhances environmental sustainability in Indian banks, with private banks outperforming public ones in reducing paper use, electricity consumption, and carbon emissions. Strong correlations were observed between digital integration and ecological outcomes, confirming that technologies like automation and paperless systems drive greener operations, though structural barriers persist in public sector institutions.

4.2. Research Questions

Research Question 1:

RQ1: How do digital technologies affect environmental sustainability in Indian banks?

Digital technologies significantly enhance environmental sustainability in Indian banks by reducing operational footprints. The study found strong positive correlations between digital integration—through tools like e-statements, mobile platforms, cloud computing, and automation—and reductions in paper usage ($r = 0.58$), electricity consumption ($r = 0.53$), and carbon emissions ($r = 0.49$). Regression analysis further confirmed that digital integration ($\beta = 0.41$) and automation ($\beta = 0.36$) are significant predictors of improved environmental performance. These results demonstrate that banks leveraging digital

technologies achieve measurable ecological benefits, consistent with previous research emphasizing fintech's role in enabling sustainable transformation (Singh, Y., & Milan, R., 2023; Chandrasekaran & Narayanan, 2024).

Research Question 2:

RQ2: What institutional factors influence the success of sustainable digital banking?

Institutional factors significantly affect the success of green digital banking. The study revealed that private sector banks consistently outperform public sector banks across all environmental metrics—paper usage, energy consumption, and carbon output—due to better digital infrastructure, proactive ESG alignment, and higher staff readiness. In contrast, public sector banks face structural barriers, including outdated IT systems, limited digital budgets, and slow organizational change processes. These disparities, confirmed by statistically significant t-test results (e.g., carbon reduction: $t = -3.04$, $p = 0.003$), highlight the need for capacity building, policy support, and technological modernization to bridge the digital-green performance gap (Kumar & Prakash, 2019; Jindal *et al.*, 2024).

4.3. Implications of the Study

- Digital technologies serve dual purposes: The findings affirm that digital transformation enhances not only operational efficiency but also environmental sustainability, positioning digital banking as a strategic tool for ESG integration.

- Investment in digital infrastructure is critical: Banks adopting technologies like e-statements, mobile platforms, AI, and energy-efficient data systems demonstrate tangible reductions in paper use, electricity, and emissions.

- Leadership and ESG officers must prioritize digitization: Bank management should view digital tools not merely as service enhancers, but as essential components of green banking strategy.

- Regulatory support is necessary: Institutions like RBI and SEBI should consider policy frameworks that offer incentives—such as tax benefits or relaxed compliance thresholds—for banks that achieve verifiable environmental improvements through digitalization.

- Public sector banks need targeted interventions: Bridging the performance gap requires financial investment, technological upgrades, and structured staff training to modernize legacy systems and improve green outcomes.

- Environmental KPIs should be digitized: Incorporating real-time monitoring of ecological indicators within digital systems can improve transparency, accountability, and alignment with

India's national and international climate commitments.

4.4. Limitations of the Study

- Sample size constraints: The study was limited to 120 respondents across seven major Indian banks. While stratified sampling was employed, the sample may not capture the full diversity of India's banking landscape, especially regional or rural bank branches.
- Cross-sectional design: The data were collected at a single point in time. As a result, the findings reflect short-term associations rather than long-term trends or causality in digital and environmental performance.
- Reliance on self-reported data: Some indicators, particularly those related to environmental practices, were based on respondents' perceptions. Despite triangulation with secondary data, social desirability bias may have influenced certain responses.
- Exclusion of customer perspectives: The study focused solely on internal stakeholders—managers, clerical staff, and IT officers—thus overlooking the experiences and expectations of customers, who play a key role in digital adoption.
- Limited access to granular sustainability data: Though bank disclosures were used, not all institutions provide standardized or comparable environmental metrics, potentially affecting the uniformity of secondary data analysis.

4.5. Recommendations for Future Research

- Expand geographic and institutional coverage: Future studies should include a larger and more diverse sample, incorporating rural branches, cooperative banks, and regional rural banks to capture a holistic view of green digital transformation across India.
- Adopt a longitudinal research design: Long-term studies would allow researchers to examine causal relationships and track the progression of digital sustainability practices over time.
- Include customer-centric perspectives: Future research should incorporate customer attitudes and usage patterns toward green digital banking services to evaluate user adoption, satisfaction, and behavioral impact.
- Conduct comparative studies across

REFERENCES

Chandrasekaran, Dr & Narayanan, M.. (2024). Recent Trends in Banking Services: A Study on Green Banking Initiatives in the Indian Banking Sector.

Chaturvedi, Ankita & Berer, Sania. (2023). The performance of Indian Commercial banks effected by Digitalization and Tech-innovations: An exploratory study using CAMEL Ratios.

countries: Cross-national studies can offer valuable insights by comparing India's digital-green convergence with other emerging or developed economies, highlighting best practices and contextual challenges.

- Explore qualitative insights: In-depth interviews or focus groups with key stakeholders—such as sustainability officers, IT heads, and regulatory officials—can provide contextual richness and deeper understanding of implementation barriers.
- Integrate advanced analytics: Future studies could leverage machine learning or sustainability dashboards to evaluate real-time performance metrics and predictive trends in digital ESG practices.

5. Conclusion

This study contributes to the growing body of research on sustainable finance by empirically examining the relationship between digital transformation and environmental performance within the Indian banking sector. The findings demonstrate that digital banking practices—such as e-statements, mobile platforms, automation, and energy-efficient IT systems—positively influence ecological outcomes, including reduced paper usage, electricity consumption, and carbon emissions. The analysis demonstrates that digital maturity maintains a strong and statistically proven link with environmental efficiency which proves technology serves as a fundamental tool for sustainable operations in financial institutions. The research demonstrates that public sector banks show significant differences when compared to private sector banks. Private institutions take a leading role in digital-green practice adoption because market competition and enhanced ESG commitments push them forward. The public sector banks operate with enduring structural and technological limitations because they need specific policy measures for development alongside capacity development initiatives. The study demonstrates digital innovation plays an essential part in achieving sustainability for banking operations. A unified initiative between regulators and policymakers and bank leadership must merge environmental priorities into digital strategies to allow India's banking sector to fulfill both national climate targets and international sustainability indices.

Cromwell, R. S., & Peprah, J. A. (2025). Banking business models and sustainable development: Challenges and opportunities. Springer. https://link.springer.com/chapter/10.1007/978-3-031-80744-2_1

Dr.P, Govindan. (2024). Green Banking In India-An Opportunity for the Growth of Environmentally Friendly Investments.

George, G., & Merrill, R. K. (2021). Digital sustainability and entrepreneurship: How digital innovations are helping tackle climate change and sustainable development. *Journal of Small Business Management*, 59(1), 144–162. <https://doi.org/10.1177/1042258719899425>

George, G., & Merrill, R. K. (2021). Digital sustainability and entrepreneurship. <https://doi.org/10.1177/1042258719899425>

Jain, P. K. (2025). Green banking innovations: Navigating environmental solutions for sustainable finance in India. IGI Global. <https://doi.org/10.4018/979-8-3693-5748-4.ch010>

Jindal, A., Hishikar, S., & Shrimali, G. (2024). Examining the portfolio carbon footprint of Indian banking system. ScienceDirect. <https://www.sciencedirect.com/science/article/pii/S0959652624018419>

Karki, U., Kumar, A., & Sharma, D. (2025). Banking in sustainability: An integrated MCDM framework for evaluating ESG performance. <https://www.emerald.com/insight/content/doi/10.1108/GKMC-04-2024-0241/full/html>

Khairunnessa, F., A., D., & Yakovleva, N. (2020). A Review of the Recent Developments of Green Banking in Bangladesh. *Sustainability*, 13(4), 1904. <https://doi.org/10.3390/su13041904>

Kharb, R., Shri, C., & Saini, N. (2025). Growth-accelerating factors of green finance for green growth: A study using TISM. *Kybernetes*. <https://www.emerald.com/insight/content/doi/10.1108/k-07-2023-1202/full/html>

Kumar, K., & Prakash, A. (2019). Developing a framework for assessing sustainable banking performance of the Indian banking sector. *Emerald Insight*

Mahajan, R., Kumar, S., & Lim, W. M. (2024). The role of business and management in driving the sustainable development goals (SDGs): Current insights and future directions from a systematic review. *Business Strategy and the Environment*, 33(1), 123–145. <https://doi.org/10.1002/bse.3712>

Park H., and Kim JD., (2020). Transition towards green banking: role of financial regulators and financial institutions, *Asian Journal of Sustainability and Social Responsibility*, <https://doi.org/10.1186/s41180-020-00034-3>

Pu, G., Wong, W. K., Du, Q., Al Shraah, A., & Alromaihi, A. (2024). Asymmetric impact of fintech and digital banking on environmental sustainability in BRICS. ScienceDirect

Sahi, A., Sharma, A., & Bagga, R. (2025). Role of green banking in promoting sustainable development in India. <https://www.emerald.com/insight/content/doi/10.1108/978-1-83608-772-420251017/full/html>

Sakhare, A. S., Soni, J. M., & Badgujar, S. P. (2023). Green banking: Initiatives by the Indian banking system towards a sustainable future. CEEOL. <https://www.ceeol.com/search/chapter-detail?id=1178168>

Saxena, A., & Fouzdar, A. S. (2025). Driving ESG excellence: The transformative role of sustainable finance in Indian banks. <https://doi.org/10.4018/979-8-3693-6617-2.ch003>

Shala, A., & Berisha, V. (2024). The impact of Fintech on the achievement of environmental, social, and governance (ESG) goals. *Research in Finance*, 40, 89–110. <https://www.emerald.com/insight/content/doi/10.1108/s1569-37592024000113a004/full/html>

Sharma M., and Choubey A., (2022). Green banking initiatives: a qualitative study on Indian banking sector. *Environ Dev Sustain* 24, 293–319, <https://doi.org/10.1007/s10668-021-01426-9>

Sharma, D. M., & Chowhan, D. S. S. (2024). Impact of green finance on sustainable development in India. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5153133

Sharma, R., Vasishta, P., & Singla, A. (2025). Impact of green banking awareness on green fintech adoption. <https://www.emerald.com/insight/content/doi/10.1108/MF-04-2024-0272/full/html>

Singh, Y., & Milan, R. (2023). Analysis of Financial Performance of Public Sector Banks in India: CAMEL. Arthaniti: Journal of Economic Theory and Practice. <https://doi.org/10.1177/0976747920966866>

Vijay, M. L., & Karthigeyan, A. (2025). Review on impact of AI on green banking in Indian public and private banks. CDES. <https://www.cdes.org.in/wp-content/uploads/2025/03/07-Review-on-Impact-of-AI-on-Green-Banking.pdf>