

DOI: 10.5281/zenodo.18493500

POLICY-DRIVEN SMART CLASSROOM FRAMEWORK FOR SUSTAINABLE ACADEMIC GOVERNANCE AND PERFORMANCE MANAGEMENT IN HIGHER EDUCATION

Rania A. Baashirah^{1*}

¹Department of Software Engineering, University of Business and Technology
Email: R.baashirah@ubt.edu.sa

Received: 10/10/2025
Accepted: 10/11/2025

Corresponding Author: Rania A. Baashirah
(R.baashirah@ubt.edu.sa)

ABSTRACT

Higher education institutions increasingly rely on digital technologies to enhance operational efficiency, student engagement, and academic performance. However, most existing smart classroom and attendance systems remain administratively oriented, focusing on automation rather than embedding governance, policy enforcement, and performance management within academic workflows. This paper addresses this gap by proposing a *policy-driven smart classroom framework* that reconceptualizes attendance as a core component of sustainable academic governance and performance management in higher education. The proposed framework integrates attendance, participation, and reporting into a structured classroom lifecycle consisting of five stages: before class, start of class, during class, after class, and reporting. Unlike conventional instructor-managed attendance practices, the framework emphasizes *system-controlled, student-initiated processes*, ensuring consistency, transparency, and accountability across courses and instructors. Attendance is not treated as an isolated administrative record but is dynamically linked to learning activities, instructional delivery, and real-time policy enforcement. By embedding attendance within classroom activities and learning assessments, the framework generates reliable and structured data that supports academic decision-making at both course and program levels. These data enable monitoring of key performance indicators, including student engagement, learning validation, instructional practices, and faculty workload. The framework also reduces manual administrative burdens on instructors, allowing greater focus on teaching quality and instructional development. The study adopts a conceptual and analytical approach, drawing on prior research in smart attendance systems, academic governance, and performance management. While the paper does not empirically evaluate the framework, it establishes a theoretical foundation for future implementation and assessment across diverse institutional contexts. The proposed framework contributes to the literature by advancing attendance systems from operational tools to governance-driven mechanisms that support sustainable academic quality assurance, transparency, and performance management in higher education.

KEYWORDS: Smart Classroom, Academic Governance, Performance Management, Higher Education

1. INTRODUCTION

Student attendance is mandatory in the higher educational system especially in Saudi Arabia, where attendance and class performance are closely interconnected. The attendance systems ensure student engagement and knowledge acquisition, which is reflected indirectly in the academic assessments.

Many papers discuss and propose various mechanisms and technologies to improve system efficiency, operational processes, and academic performance, addressing the limitations of manual attendance systems [1], [4], [5].

Although studies show that technology-based attendance systems demonstrate better performance and engagement, they lack a more thorough conceptual explanation of how efficient systems would impact the academic workflow, decision-making processes, and quality reporting, where policy enforcement remains largely underexplored [7], [8], [11].

1.1. Research Gap and Contribution

This paper introduces a framework for a smart-driven classroom. it redefines the attendance system

into an academic governance workflow and a performance management tool. The framework aims to reduce inconsistency in handling attendance across classes and instructors by minimizing the variation of recording practices and standardizing attendance rules. Thus, expanding the system capacity to generate real time reporting for academic performance management and decision making.

The proposed framework integrates attendance into a structured classroom workflow, where students and faculty individually activate their attendance in real time. This workflow ensures governance rather than administrative operation.

The framework also supports teaching and learning evaluation. The attendance is linked to class learning activities to monitor and govern academic functions, workload, and instructional practices for timely decision-making.

2. Proposed Conceptual Framework

2.1. Framework Design

The proposed framework in this paper articulates the policy-driven components that govern attendance, participation, and reporting [7], [10] within classroom workflows in the following logic:

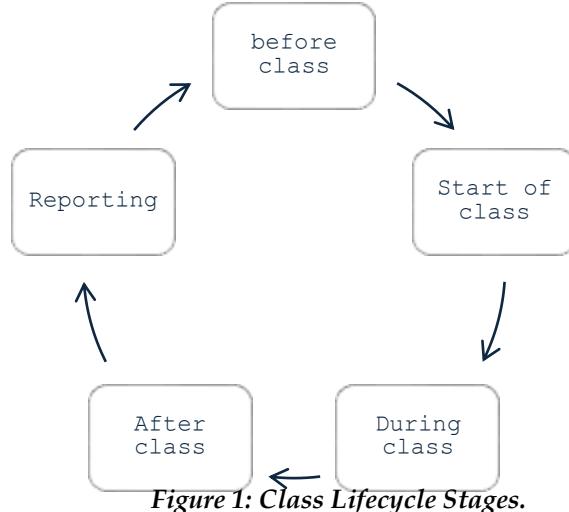


Figure 1: Class Lifecycle Stages.

The workflow components are structured into five stages and mapped across the class lifecycle.

No.	Stage	Framework Component
1	Before class	Class schedule, enrolment alignment
2	Start of class	Faculty class activation, student attendance activation
3	During class	Real-time enforcement, activity participation
4	After class	Absence monitoring, notifications
5	Reporting	Operational & academic reporting

2.2. Implications for Academic Governance and Performance Management Academic Governance

The framework has several implications for academic governance and performance management

in universities. Enforcing a system-controlled process initiated by students shifts governance from instructor-managed practices to a structured process [1], [6], [9].

This shift enhances operation transparency and

student accountability.

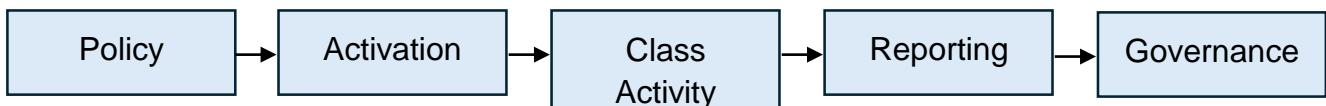


Figure 2: Conceptual workflow for Academic Governance.

3. PERFORMANCE MANAGEMENT

Students initiating their attendance are required to participate in learning activities at the end of the class to demonstrate their understanding of content

[2]. This assessment generates reliable data report that can be interpreted within course improvement plan and used to support academic decision making (figure3). Pattern related to low student performance can assist instructors to identify the areas of learning gaps.

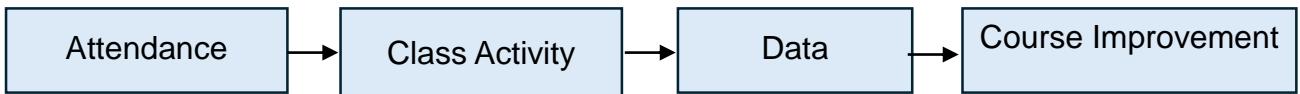


Figure 3: Conceptual workflow for Performance Management

3.1. Faculty Workload and Teaching

Moreover, the framework provides structured, timely outputs that efficiently reduces manual workload allowing instructors to focus on teaching leaning process as well as instructional development

3.2. Decision-Making and Reporting

Structured data report is generated at the

classroom level to capture key performance indicators for academic decision-making [8], [11]. These reports include:

- Student attendance time
- Class starting time and duration
- Validating student learning and class content
- Student engagement
- Evaluating class content and delivery
- Student performance pattern

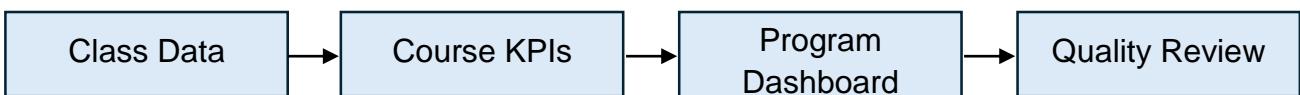


Figure 4: Conceptual workflow for Performance Management

Data is visualized in consolidated dashboard for sustainable monitoring of the course. This report enables academic departments to review the course-level (KPIs) and assess its consistency with the academic standards at the programs-level (Figure 4).

engagement, instructional practices, faculty workload, and academic decision-making. On the other hand, data analytics can be incorporated to enhance reporting processes and support institutional quality assurance efforts.

4. LIMITATION AND FUTURE WORK

This paper proposes a policy driven framework for smart classroom to fosters governance and performance management in higher academic institution. It does not give any implications on implementing the framework or evaluating its outcomes. There are many relative studies to test the framework applicability across different academic context and settings to identify its success. Some possible factors affect the framework outcomes including infrastructure, technology readiness, and institutional academic policies. Additional research should explore how the framework functions in practice and to examine its relevance to student

5. CONCLUSION

A theoretical framework is presented that highlights attendance as part of academic governance and performance management. The framework illustrates how enforced system initiated by students contributes to transparency and accountability. The framework links the system and classroom activity to emphasize sustainable reporting for academic decision making on the class and program levels. It basically offers a structured approach to monitor course delivery and academic consistency. The framework establishes a basis for future empirical studies and experimentation to explore its effectiveness across different academic

environments and contexts.

REFERENCES

A. A. C. Fauzi, A. A. Yamani, and M. S. M. Arifin, "Automated attendance monitoring system for primary schools," *Journal of Mathematics and Computing Science*, vol. 9, no. 1, pp. 1-12, 2021.

C. O. Akinduyite, A. O. Adetunmbi, O. O. Olabode, and E. O. Ibidunmoye, "Fingerprint-based attendance management system," *Journal of Computer Sciences and Applications*, vol. 1, no. 5, pp. 100-105, 2013.

D. Nusantara et al., "Implementation of a web-based student and teacher attendance system with QR code integration using the RAD method," *Journal of Information Systems Engineering and Business Intelligence*, vol. 3, no. 2, pp. 99-110, 2022.

F. Syahidi, "Enhancing efficiency in student attendance recording through implementation of a digital presence system: A field study in elementary schools," *Journal of Educational Technology Development and Exchange*, vol. 16, no. 1, pp. 26-38, 2023.

H. D. Rjeib et al., "Attendance and information system using RFID and barcode," *International Journal of Advanced Computer Science and Applications*, vol. 9, no. 5, pp. 430-435, 2018.

K. D. Annurrahma, S. H. Suryawan, and A. Rahim, "Design of a meeting attendance system based on dynamic QR code with UUID v4," *Jurnal Riset Informatika*, vol. 7, no. 4, pp. 456-469, 2023.

M. R. Chowdhury et al., "Smart attendance system using IoT and biometric authentication," *International Journal of Engineering Research & Technology*, vol. 8, no. 5, pp. 227-231, 2019.

N. Ahmad et al., "Enhancing attendance and student exam score based on mobile attendance application," *International Journal of Advanced Computer Science and Applications*, vol. 11, no. 6, pp. 141-147, 2020.

P. Salunkhe et al., "A review on real-time RFID-based smart attendance systems for efficient record management," *Journal of Digital Learning and Distance Education*, vol. 9, no. 3, pp. 101-115, 2025.

S. Banpali et al., "Automated attendance system using biometric technologies," *International Journal of Computer Applications*, vol. 182, no. 48, pp. 1-6, 2019.

S. M. El-Salhi et al., "Attendance management system using barcode identification," *International Journal of Computer Science and Network Security*, vol. 19, no. 3, pp. 87-94, 2019.