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ABSTRACT 

Pythagoras’ life, teaching and contribution in science and philosophy has been transfigured by legend, which 
hardly can be separated. Tracing his fingerprints of mathematical nature is attempted here, based on evidence 
from great technical works and temples accomplished during his time in Samos and Magna Graecia. The ap-
plication of the Pythagorean triples in the design of the Athena temple at Paestum built in c. 520 BC has already 
been established and was considered to attest the Pythagorean consciousness of the architect. Similar conclu-
sions are also drawn in this article from the layout of the Polycratean temple of Heraion in Samos, where the 
earliest application of Pythagorean mathematics and proportions is disclosed in this article. It is also demon-
strated that the achieved accuracy in pre-positioning of the Eupalinos’ tunnel mouths and the well-designed 
maneuver at the crossing indicate the involvement of a mathematical mind supporting the engineering skills 
of Eupalinos. By comparison with the Hellenistic temple of Apollo at Didyma, where the systematic applica-
tion of the Pythagorean triples is again revealed in temple modeling and layout, it is concluded that the geo-
metrical method of design of the ancient temples and the concept of harmonic proportions was fully devel-
oped in Pythagoras’ time and his philosophy of proportions in architecture, amalgamated later with Plato’s 
ideas, prevailed since then until the present. 
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1. INTRODUCTION 

Samos in its heyday hosted men of letters, out-
standing architects, artists, and scientists. As conjec-
tured, there must have been considerable geometrical 
activity in the sixth-century BC in Samos, required by 
the immense building projects. It is also believed that 
the origins of Greek mathematics lie in Greek engi-
neering and that the building projects had greater in-
fluence on Pythagoras than Pythagoras had on the 
building works. Not only the Eupalinos’ aqueduct, 
but primarily the temple of Heraion, the so-called Sa-
mian “labyrinth”, presupposed careful application of 
mathematics and project design (Rihll and Tucker, 
2003: 416). 

Geometry is generally held to have been applied 
first in Babylonia and Egypt. It owed its development 
in Egypt to the practice of land measurement because 
the overflow of the Nile would disorder the bounda-
ries of land pieces. It was Thales, who after a visit to 
Egypt first brought the study of geometry to Greece. 
Not only did he make numerous discoveries himself 
but laid the foundations for many other discoveries 
on the part of his successors.  

Thales was regarded as the patron saint of mathe-
matics even in the fifth century (Burkert, 1972: 413). 
Pythagoras has grown in this intellectual atmosphere. 
He was born in Samos in c. 570 BC and left for Italy 
most likely in 532/531 BC because of the oppressive 
tyranny of Polycrates (Bunkert, 1972: 110). He was in 
Samos when the works for the Heraion were in pro-
gress and of course during the completion of the tun-
nel for which the works started as early as c. 550 BC 
(Kienast, 2005: 37). 

As eloquently epitomized by Burkert, there is no 
doubt of the historical reality of the Pythagorean so-
ciety and its political activity in Croton; but the Mas-
ter himself can be discerned, primarily, not by the 
clear light of history but in the misty twilight between 
religious veneration and the distorting light of hostile 
polemic. Pythagoras and the Pythagoras’ legend can-
not be separated (Burkert, 1972: 120).  

It is hoped at least that the Master’s fingerprints 
can be traced in great technical works of his time. I 
believe therefore that it is worth tracing and studying 
any indication of mathematical nature in the architec-
tural and technical masterpieces which were being re-
alized during Pythagoras’ time in Samos, and Magna 
Graecia. This is partly the aim of this paper, along 
with the investigation of the origin of mathematical 
knowledge applied.  

                                                      
1 A Pythagorean triple consists of three positive integers a, 
b, and c satisfying the Pythagorean theorem, such that 
a2+b2=c2 

Our objectives, the steps we follow, start of course 
from Samos, and extend in Croton’s metropolis in 
Achaea, near Aegion, and finally in Magna Graecia. 
The monuments examined, temples and the 
Eupalinos’ aqueduct, fall in the span of Pythagoras’ 
life. A further step brings us to the Hellenistic temple 
at Didyma in the domain of Miletus, Thales’ place of 
origin, for the study of the evolution of Pythagoran 
ideas in the next centuries. 

 A polemic against Pythagoras extends from antiq-
uity to the present and some scholars consider today 
that Pythagoras was not “a master geometer, who 
provides rigorous proofs, but rather someone who 
recognizes and celebrates certain geometrical rela-
tionships as of high importance” or even that “the tra-
ditional stories of discoveries made by Thales or Py-
thagoras must be discarded as totally unhistorical”. 
Therefore, our study of the Pythagorean triples1 ex-
tends into the Babylonian mathematics. 

It is revealed for the first time that the layout of the 
temples at Heraion in Samos, Trapeza near Aegion, 
and Apollo temple at Didyma is designed based on 
Pythagorean triples; the method of temples’ design 
and generation of the triples are also elucidated. Al-
ternative methods of Pythagorean triples generation 
are investigated for the temples examined. The inge-
nuity of the Old Babylonian mathematics is appreci-
ated, but it is concluded that Neugebauer’s persis-
tence on the use of generating functions is an unnec-
essary anachronism.  

2. GEOMETRIC DESIGN OF THE LAYOUT 
OF LATE ARCHAIC TEMPLES BASED ON 
PYTHAGOREAN TRIPLES 

Layout surveying for important constructions in 
ancient Egypt was both an important procedure and 
ceremony as described by Paulson (2005). At the be-
ginning of the construction of the pyramid, the 
priests, builders, and perhaps the pharaoh himself 
would have performed a “stretching of the cord” cer-
emony. The Egyptian phrase for a surveyor was a 
“rope stretcher” and surveying was known as 
“stretching a rope”. In fact, a calibrated rope was one 
of the tools used in surveying. Several tombs from the 
New Kingdom era about 1100 BC show the tomb 
owner overseeing men using ropes to measure fields, 
presumably to calculate the taxes for yield of these 
fields (Paulson, 2005: 2/12). 

In the following the dimensions and layout of Ar-
chaic temples in Samos and Magna Graecia are inves-
tigated for possible Pythagoras’ influence; the exam-
ined monuments were built in the second half of the 
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6th century BC, a period of Pythagoras’s presence 
there. 

2.1 The second dipteros temple of Heraion in Sa-
mos 

The second dipteros temple of Heraion in Samos is 
described as a labyrinth (Pliny, Natural History 34.8 
3). The enigmatic term “labyrinth” must be a popular 
name of the gigantic temple of Hera in her sanctuary 
in Samos, which through its double and triple rows of 
over a hundred columns must have given the impres-
sion of labyrinthine complexity (Kyrieleis, 1990: 17). 
Despite that, the geometric design of the temple can 
be greatly simplified if the geometric rules applied are 
understood, a task which is attempted here. 

During the tyranny of Polycrates, work began on a 
new temple, known as the second dipteros (Hellner, 
2002: 168) or Polycratean temple, on a stylobate meas-
uring 55.16×108.63 meters (magenta in Fig. 1), even 
larger than the first dipteros temple. It is revealed that 
the dimensions of the new temple signal a change of 
proportions at the Heraion in Samos, a new trend 
which was spread and applied to other Late Archaic 
temples soon. Thus, by comparison to the ratio 2:1 of 

the first dipteros temple, the stylobate’s ratio at the 
second dipteros temple is 108.63: 55.16 = 1.9694 = (2- 
1

32
). It is indeed a minor numerical change by itself, 

associated however with a “latent” significant evolu-
tion at the level of geometric design, which is the ex-
pert application of Pythagorean triples. As estimated 
from the temple plan (Gruben and Kienast, 2014: 
Beilage 5), the columns are about 0.3 to 0.35 meters 
apart from the outline of the stylobate. Thus, if the sty-
lobate dimensions are reduced by d=0.65 m, the di-
mensions of rectangle envelope around the outer col-
onnades, blue in Fig. 1, are calculated as follows: 

(55.16-0.65) × (108.63-0.65) = 54.51 m×107.98 m and 
their ratio: 

107.98/54.51 = 1.98092 equals to 208/105 (1.98095).  
Therefore, the blue rectangular envelope, which 

circumscribes tangentially the outer colonnade, is a 
Pythagorean one corresponding to the Pythagorean 
triple (105, 208, 233). Furthermore, it is:  

54.51

105
 = 0.519143 m and 

107.98

208
= 0,519135 m  

and this implies a length unit at the Heraion tem-
ple, a cubit of 0.519 or ~0.52 m, impressively close to 
the Samian cubit calculated below from the tunnel 
measurements.  

 

Figure 1: Simplified plan of the second peripteros temple of Heraion in Samos, based on the plan 5 by Gruben and 
Kienast (2014). The stylobate (magenta), the Pythagorean rectangles in blue (No 1, 2, 3 and 4 of the Table 1), the subdivi-

sion of the interaxial rectangle in red (No 5 and 6 in Table 1) and the inferred rectangular grid in green. 

The interaxial distances in meters, for a column ra-
dius of one cubit at the base, are:  

DL= (107.98-2x1.04)/23 = 4.60 m along the length 
and DW = (54.51-2x1.04)/8 = 6.55 m along the temple 
width. Their ratio is remarkably close to the square 

root of 2, which implies that DW equals the diagonal 
of a square with side DL, and that DW and DW served 
as modules of a rectangular grid. 
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Apart from the rectangle of the outer colonnade, 
some smaller Pythagorean rectangles are also deline-
ated on the temple layout in blue and are summarized 
in the Table 1. They are characterized as Pythagorean 
because their sides and diagonals are proportional to a 
Pythagorean triple shown in the Table 1. The rectan-
gles No 1 and No 2 in the table correspond to the enve-
lope of the outer and inner colonnade respectively (Fig. 
1). The rectangle No 3 is repeated twice and surrounds 
three rows of nine columns each, at both faces of the 
temple. The inner structure of the temple is based on 
the Pythagorean rectangle No 4 in the Table 1.  

Table 1: Pythagorean rectangles revealed in the Heraion 
temple 

Rectan-

gle, No 

Length, m Width, m Pythagorean 

triple 

1 107.98 54.51 (105, 208, 233) 

2 98.77 41.40 (5, 12, 13) 

3 11.29 54.51 (5, 12, 13) 

4 61.94 28.30 (115, 252, 277) 

5 59.86 52.43 (48, 55, 73) 

6 52.43 45.96 (48, 55, 73) 

 
It is amazing that the rectangle formed by the axes 

of the outer colonnade, red in Fig. 1, measures 
52.43x105.00 m and has a sides ratio 2.003, practically 
2: 1, the harmonic ratio considered to correspond to 
the octave (diapason). The interaxial rectangle can be 
subdivided in two Pythagorean rectangles, No 5 and 
6, respectively 13xDL and 10xDL long both propor-
tional to the Pythagorean triple (48, 55, 73).  

In short, it is supported that there is strong evi-
dence of thorough mathematical design in the temple 
layout, including the multiple application of Pythag-
orean triples and simple proportions which are im-
plemented by the use of a rectangular grid of dimen-
sions DL by DW.  

The application of Pythagorean rectangles pro-
vides a better design control because in addition to 
the intended dimensions of the rectangle sides, the di-
agonal is known in in round length units, so that right 
angles and the dimensions are more accurately imple-
mented. This is particularly significant for the colon-
nades but is also locally applied through the rectan-
gles 3 and 4 of the Table 1 and this indicates the great 
care for geometrical perfection. Besides, the applica-
tion of the grid, a technique already in use by the 
Egyptians, facilitates the allocation and control of the 
architectural plan on the ground. 

2.2 The Trapeza temple 

Another Archaic temple, the layout of which is 
based on a Pythagorean rectangle, is the peripteral 
hecatombedos Doric temple at Trapeza of the city of 

Rhypes, a city-state of ancient Achaean Metropolis of 
Croton in Magna Graecia. The temple was founded in 
the decade 520- 510 BC (Vordos, 2016); however, 
Kanellopoulos and Kolia (2011: 148) date the temple 
earlier in 530-525 BC. The temple dimensions in me-
ters, as given by Hellner and Gennatou (2015: 120), 
and the values of the Length to Width (L/W) ratio are 
summarized in the Table 2. It is underlined that the 
euthynteria sides correspond precisely to the Pythag-
orean triple (8, 15, 17) multiplied by 7, given that 
31.56/16.84= 1.8741~15/8= 1.875 and that 
1.875/1.8741 =1.0005. It is interesting too that the 
Trapeza temple is contemporary or older than the 
temple of Athena at Paestum. The calculated length 
unit u from the euthynteria dimensions is: 

 u= 31.56 m/15x7 = 16.84 m/8x7 = 0.3006 m. 
It is noted that the crepis and stylobate dimensions 

are also expressed in round numbers in terms of the 
model unit, shown bold in the Table 2; it should there-
fore be examined how this unit u is correlated to the 
Attic foot. The location of the temple on the route 
from Delphi to Italy is also noted and the point is 
raised whether it could be corelated with Pythagoras’ 
visit to Delphi. In any case, another reasonable way of 
Pythagoras’ influence is through the city of Croton, an 
Achaean colony in Magna Graecia. 

Table 2: Dimensions of Trapeza temple from Hellner - 
Gennatou (2015) 

in meters and model units (u)  

Level Length 
m/u 

Width 
m/u 

L/W 

Euthynteria 31.56 
105 

16.84 
56 

15/8 
(1.875) 

Crepis 31.25 
104 

16.45 
54.75 

19/10 
(1.9) 

Stylobate 30.51 
101.5 

15.64 
52 

39/20 
(1.95) 

2.3 The Athena temple at Paestum 

 Especially important is the envisaged influence of 
Pythagoras in the design of the temples in Magna 
Graecia in the second half of the 6th century BC. Con-
firmation on that comes from the Athena temple at 
Paestum examined for “Pythagorean qualities” by 
Nabers and Wiltshire (1980). The temple is commonly 
dated to around 510 BC and demonstrates the appli-
cation of Pythagorean triples in southern Italy during 
Pythagoras’ time there, roughly 532/1 to 494/3 BC.  

Nabers and Wiltshire (1980), using precise meas-
urements of the temple, independently established, 
discovered that two Pythagorean triples were used in 
the design of the temple, one on the plan and a second 
one on the flank elevation. The Pythagorean triangle 
present in the plan of the Athena temple at Paestum 
is a version of the basic or “primitive” Pythagorean 
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triangle (5, 12, 13), enlarged by a factor of 8. Yet an-
other Pythagorean triangle exists in the design of the 
temple on the flank elevation with the sides (28, 96, 
100), which is a version of the primitive Pythagorean 
triple (7, 24, 25), enlarged by a factor of 4. Therefore, 
Nabers and Wiltshire (1980: 215) conclude that the 
teachings of Pythagoras in southern Italy affected the 
design of the Athena temple and in particular that: 
“Here we have a structure of fairly certain date, con-
temporary with Pythagoras himself, which at least at-
tests the Pythagorean consciousness of its architect 
and may reflect broader philosophical and political 
conditions at Paestum as well. Finally, as a physical 
monument, it manifests in an empirical way the fun-
damental Pythagorean proposition that "things are 
numbers" and suggests that the cosmic order appar-
ent to the Pythagoreans in the musical scale may also 
be expressed in architectural form”. 

The application of a Pythagorean triple also on the 
elevation is particularly important for the interrela-
tionship of proportions in three dimensions, pro-
jected from the plan layout to the whole monument. 

2.4 The echo of Pythagorean harmony on the de-
sign of the Apollo temple at Didyma 

The application of Pythagorean triples in ancient 
architecture became widespread as documented by 
Ranieri (1997: 210) who attributed to Pythagoras a 
rule of triads. For comparison’s sake, a short reference 
to the Hellenistic Apollo temple at Didyma follows, 
selected as an outstanding case study. The temple is 
the best preserved and among the largest Greek tem-
ples (Weber 2011: 33), it has been studied systemati-
cally since long and reflects the Pythagorean-Platonic 
ideas of harmonic design. It is therefore reviewed 
here for investigating possible Pythagorean tradition 
a few centuries after the Heraion and Athena temples. 

Birnbaum (2006) performed a thorough harmonic 
analysis of the dimensions of the Apollo temple at 
Didyma by calculating ratios of rectangle sides and 
other dimensions that correspond to musical conso-
nances. Certain ratios in architecture are considered 
harmonic, by analogy to vibrating strings which 
sound at musical intervals if their lengths are in sim-
ple, rational numerical relationships. So, the ratio 2: 1 
is considered to correspond to the octave (diapason), 
2: 3 to the fifth (diapente) and 3: 4 to the fourth (dia-
tessaron). It is underlined by Birnbaum (2006: 12) that 
the connection of numbers with music by the Pythag-
oreans gave the numbers an over-mathematical 
meaning and was used as a fundamental insight into 
the essence of reality, in the belief that the metaphys-
ical order is expressed in the musical harmony. A rec-
tangle is considered harmonic if the sides ratio devi-
ates less than one percent from a musical interval. The 

crepis outline of Didymaion with a side’s ratio of 
197/100, is close to the ratio 2: 1 but not enough to be 
considered as harmonic. By contrast, the hypothetical 
rectangle which lies in the plan of the temple exactly 
in the middle between the second and third crepis 
step is harmonic with sides ratio exactly 2:1 (Birn-
baum 2006:94). In short, Birnbaum (2006: 181) con-
cludes that an interpretation of dimensions in connec-
tion with the Pythagorean-Platonic theory of num-
bers is not only possible, but rather mandatory. 

It is understood that Birnbaum investigates Didy-
maion in Povilioniene’s sense (2013: 96), as a link be-
tween music and architecture, as a philosophical-aes-
thetic problem of harmonious universality in which 
interaction between the art of sounds and visual art 
reveals itself most clearly through a constructive 
“common denominator” – the use of numbers, pro-
portions and symmetry. 

Particularly important and insightful for the plan 
design of the Didymaion temple is the system of in-
scribed letters at the upper blocks of the euthynteria, 
described and ingeniously interpreted by Weber 
(2011: 33). In places of the temple’s euthynteria exist 
letters, carefully carved like inscriptions, at an aver-
age distance of b = 1.324 m, where b stands for the 
German term “Buchstabenabstand”. Weber inter-
preted these letters as the legend of a grid of 44×88 
square cells, green in Fig. 2, with elementary cell di-
mensions 1.324X1.324 m and total dimensions 58.256 
× 116.512 m. On the plan eight large squares can be 
shaped into two rows, each of four squares of 22x22 
cells. The crepis ABEF, shown in red, is larger than the 
green grid and measures 60.085 x118.340 m. So, the 
2:1 ratio of the grid becomes in the crepis outline 
197:100 and Weber investigated why this change from 
the “nice” 2:1 ratio (88:44) to an “ugly” one. More im-
portantly, he also recognized that the regular distance 
between the letters (b = 1.324m) equals to one quarter 
of the interaxial distance, taken as the modulus, M, of 
the temple (M = 5.296 m), and to one half of the square 
bases of the columns. Incidentally, it is reminded that 
at the Heraion temple in Samos the sides ratio of the 
interaxial rectangle of the outer colonnade is 2:1. 

Adherence to the harmonic theory prevented the 
researchers from recognizing that the temple layout 
originated from an “ugly” Pythagorean rectangle of 
the crepis outline as a background from which the 
“nice” rectangle of the grid resulted. The crepis out-
line is in fact composed of two equal Pythagorean rec-
tangles ABCD and DCEF (Fig. 2) with sides 118.34 m 
and 60.085/2 = 30.043 m and sides ratio equal to 
3.9394. This ratio practically equals to 63/16 = 3.9375 
and therefore the rectangle sides 118.34 m 30.043 m 
are proportional to the members 16 and 63 of the Py-
thagorean triple (16, 63, 65). 
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Figure 2: Division of the crepis (ABEF) of the Apollo temple at Didyma into the Pythagorean rectangles ABCD, DCEF, 
GHLM and HJKL (red), overlying the green grid. The Pythagorean rectangle of the Naiskos, PQRS in red, and the square 

bases of the columns (magenta) are also shown. Modified from Weber (2011). 

The respective rectangles of the Pythagorean 
model, A’B’C’D’ and D’C’E’F’ (Fig. 3), measure 16x63 
dimensionless model units, named here “Pythago-
rean” units (p). The equivalent of p-unit on the temple 
equals AB/63= 118.34/63 = 1.878 m. By shifting in the 
model of Fig. 3 the outline A’B’E’F’ inwards by half a 
model unit, a “nice” rectangle results 31x62 in size, 

composed of eight squares 15.5x15.5 (p) units in two 
rows like the temple.  

By analogy, by shifting the crepis outline ABEF of 
the temple (Fig. 2) by the equivalent of p/2=1.878 
m/2 = 0.939 m the nice rectangular of the green grid 
results. 

 
Figure 3: Pythagorean rectangles A’B’C’D’ and D’C’E’F’ proportional to the (16, 63, 65) triple, as a model of the Apollo 

temple crepis. 

This relationship of the Pythagorean model and the 
actual geometry of the temple provides an insight into 
the process of architectural design. First, the geomet-
rical pattern is designed on the Pythagorean model 
like Fig. 3, which is then scaled and transformed into 
the desired dimensions.  

Furthermore, apart from the Pythagorean rectangle 
of the crepis outline, three more are recognized on the 

plan of the Apollo temple, shown in red in Fig. 2. The 
Naiskos, PQRS, with sides ratio 7:12, measures on the 
stylobate 8.358x14.328 m (Birnbaum, 2006: 161); it is 
therefore half of the Pythagorean rectangle 
8.358x(2x14.328) m which is proportional to the Pythag-
orean triple (7, 24, 25). In addition, each of the rectangles 
GHLM and HJKL measures (20x2b)x(21x2b) and is pro-
portional to the Pythagorean triple (20, 21, 29). 
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The length unit in the temple is in general consid-
ered to be the Attic foot and two alternative values are 
the most credible ones, either 29.85 cm (Birnbaum, 
2006: 174) or 29.42 cm (Weber 2011: 45). However, a 
third alternative unit will be considered by the author 
in a forthcoming article, that is a cubit of 0.5296 m 
equal to one tenth of the module M and equivalent 
foot equal to 0.5296/1.5 = 0.353 m. It is noted that We-
ber’s estimation of foot corresponds exactly to 0.353 x 
5/6 meters and 2b/9 or M/18; it is therefore preferred 
as a commensurate estimation to the temple dimen-
sions.  

The geometric design and the harmonic propor-
tions of the temple along with the roofless adyton and 
the axial orientation of the temple are among the out-
standing features of a unique monumental architec-
ture. Castro et al. (2016) examined five temples of 
Apollo on Mainland Greece and Ancient Ionia (Asia 
Minor), including Didyma, regarding their function-
ing through astronomical orientation, and showed 
that the rise, setting, orbit and observation of certain 
constellations in the celestial sphere, as well as the so-
lar stands, can be directly related to the architecture 
of the temples. They underlined, that the unique ar-
chitecture of the Great Temple of Apollo at Didyma, 
the most renowned Sanctuary and oracle after Delphi, 
can be related to astronomical observation. 

3. INDICATIONS ON THE APPLICATION 
OF MATHEMATICS IN THE EUPALINOS’ 
TUNNEL 

Pythagoras was born in a period when intellectu-
ally astonishing things were happening in the neigh-
boring city of Miletus, where Ionian natural philoso-
phy was being developed. And on his home island 
Samos architectural and technical masterpieces were 
being realized, such as the tunnel of Eupalinos, which 
is still hailed as an “unsurpassed feat of engineering”. 
This tunnel, 1,036 meters long and devised to guaran-
tee a long-term water supply, was dug from both 
ends in order to shorten the construction time – a ven-
ture which required substantial mathematical and 
technical skills“ (Riedweg, 2013: 51). Pythagoras’ in-
volvement in the design of the Eupalinos’ tunnel, alt-
hough reasonably suggested by Riedweg, has not 
been examined in this sense so far and is investigated 
in this article. According to Riedweg (2005: 46) the 
construction of the Eupalinos’ tunnel “falls in Pythag-
oras’ later youth and is hardly conceivable that he was 
not familiar with this bold engineering project, which 
must have taken years to complete”.  

Possible transfer of designing and monitoring ex-
pertise from the Heraion temple to the tunnel engi-
neer cannot be excluded, since again Riedweg (2005: 

45) notes that the Samian architect Theodorus who 
dealt with the giant temple of Hera was a many-fac-
eted and innovative artist, who is supposed to have 
invented among other things a device for measuring 
angles, a water-level, and the lathe (Pliny, Natural 
History 7.198).  

Certainly, a leveling device was constantly re-
quired in the construction of both, the Heraion temple 
and the horizontal tunnel, as well as in the positioning 
of the predetermined tunnel mouths. Tunneling 
started in parallel from both mouths, a fact meant by 
Herodotus’ adjective “double-mouthed 
(αμφίστομον)” and convincingly confirmed already 
in 1884 by Fabricius (1884: 173-176). The tunnel floor 
elevation at the northern portal is 55.22 m and at the 
southern one 55.26 m (Kienast, 1995: Plan 2) and re-
mains an unresolved mathematical conundrum how 
the one-kilometer apart portals were fixed so accu-
rately.  

The Eupalinos’ aqueduct (Fig. 4) has been exten-
sively studied and highlighted as exceptional engi-
neering feat of the sixth century BC, as well as a math-
ematical problem studied already in antiquity by 
Heron (Burns, 1971: 173). The tunnel pierced the Kas-
tro Hill at the same time, at two portals in the North 
near the Ayiades spring and in the South above the 
city of Samos (Fig. 5). The aqueduct is composed of 
three sectors, accommodating the water pipeline from 
the spring to the city. The supply sector, outside the 
city walls, carries water from the copious and still 
flowing spring to the northern mouth of the tunnel 
and the distribution sector starts from the southern 
mouth, within the city walls; both end sectors were 
excavated using the shafts-and-gallery tunneling 
technique (Chiotis, 2017: 5). At the interval between 
the end sectors, a few meters below the floor of the 
tunnel and simultaneously, an inclined narrow gal-
lery was dug, on which the water line rests, com-
prised of interconnected terracotta pipes. 

Aqueduct description is kept to a minimum in this 
article, given the detailed documentation by the Ger-
man Archaeological Institute (Kienast, 1995), as sup-
plemented by recent publications of independent re-
searchers (Lyberis et al., 2014; Zambas et al., 2017; 
Zambas, 2017; the latter being an updated source of 
references), working for the project of the tunnel’s res-
toration of the Greek Ministry of Culture. Fabricius’ 
first study of the aqueduct in 1884 has been practically 
confirmed and refined by modern studies and the aq-
ueduct is perfectly illustrated in his outstanding syn-
thetic presentation of Fig. 4, the best concise descrip-
tion of the tunnel and the aqueduct. 
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Figure 4: Eupalinos’ aqueduct in general section on the top and detailed views below from Fabricius’ first study in 1884. 
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Figure 5: Location maps projected on ESRI’s satellite images: a. The aqueduct and the walls of the ancient city of Sa-
mos, in Greek coordinates (EGSA); b. The broader area, including the island Fourni where the marble for the Polycratean 

temple of Heraion was quarried (Cramer, 2004: 165). 
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3.1 Geometric drawings on a rock slab 

There are hints from the Eupalinos’ tunnel itself of 
the practical application of mathematics for the de-
sign of the tunnel. Among them a recent discovery of 
a slab found 132 m from the north mouth during the 
restoration of the Archaic lining, with an incised 

rough geometric drawing (Fig. 6). The meaning of 
this geometric construction is not obvious. It seems 
like a mason’s explanation of a geometric construc-
tion or possibly a comment on the V-shaped devia-
tion of the north bore of the tunnel according to 
Zambas (2017: 126, his Fig. 27). 

 

Figure 6: Our interpretation of the ancient drawing carved on a rock slab from the Eupalinos’ tunnel lining, based on the 
slab’s photo published by Zambas (2017). M is taken in the middle of the quadrant AB. Dashed lines were added to the 

drawing. 

In our interpretation, the ancient drawing on the 
slab displays basic geometric rules, as if prepared for 
instructions by a mathematician to an engineer. The 
central angle ACB in a quadrant is right; the inscribed 
angle BAF in a quadrant is half of the right angle; the 
inscribed angle BAH in a semicircle is right, as ex-
pected from Thales’ theorem; the tangent to the circle 
at A is drawn perpendicular to the radius; the right 
angle fractions of ¼, ½ and ¾ are also drawn and their 
tangents can be calculated as ratios of sides in right 
triangles.  

3.2 The deviation from the alignment and possi-
ble application of Thales’ theorem in tunnel 
surveying  

It is generally accepted that the tunnel was planned 
horizontal, aligned between the predefined mouths 
but the original plan was significantly modified in the 
northern branch, and rather relatively early, given the 
significant deviation from the alignment about 250 
meters from the north end.  

Between points 23 and 24 of the longitudinal plan 
(Kienast, 1995: Plan 3a) of the northern branch, at a 
distance of c. 240 meters from the northern end (Fig. 
7), there are adjacent symbols K and Λ of the ancient 
measurements at a distance of only 2.5 meters apart. 

However, the regular distance of the sequential meas-
uring marks of the system 1 in the North is estimated 
by us to 20.52 m. As Kienast correctly concludes, the 
short distance between the symbols K and Λ indicates 
that the symbol Λ belongs to an earlier series of meas-
urements from a different starting point.  

We verified this conclusion through the calculation 
of the lengthening due to the deviation up to the point 
A in Fig. 7. It was found to be 18.42 m and, by the ad-
dition of 2.5 m for the distance between the points K 
and Λ, the interval of 20.92 m results relatively close 
to our estimation of the regular interval of ancient 
measurements of 20.52 m. In any case, depicting dur-
ing tunneling the actual routing along the triangular 
detour and further up to the crossing point is a com-
plicated task that requires accurate surveying meas-
urements. Even the so-called “triangular” detour, 
shown in Fig. 7, is more complex than this description 
suggests, because the course between the points K 
and Σ is a crocked path and observing is hindered at 
least between the points 2 and 4, 6 and 8, 7 and 9, 9 
and B and Σ and Π. Therefore, recording the tunnel 
direction is mandatory and the successful crossing in-
fers accurate topographic mapping during tunneling 
for which we propose a possible method based on 
Thales' theorem.  
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Figure 7: The route of the “triangular” detour and coordinates of critical points in regard with the tunnel axis, adopted 
from Kienast’s longitudinal plan (1995: Plan 3a) of the northern branch. It is noted that observation between points: (2, 

4), (6, 8), (7, 9), (9, B), (Σ, Π) is hindered. 

Using a measuring cord or rod the direction change 
CAB, shown in Fig. 8, between two angular branches 
of the tunnel can be measured as a ratio of the perpen-
dicular segments CB and CA, following the Egyptian 
practice. In the extension of the old direction it can be 
taken AM=MB=1, one length unit supposedly one cu-
bit, and MC equal to one unit again to define the point 
C. Thus, ACB is a right angle according to Thales’ the-
orem, since it is circumscribed in circle of diameter AB 
centered at M. In this way the “angle” between suc-
cessive segments is measured as a ratio CB/CA suffi-
cient for graphical solution for drawing the tunnel ge-
ometry.  

Equally well the ratio AC/AB can be used which 
corresponds to the notion of spread in Rational Trig-
onometry. The spread between two lines is a dimen-

sionless quantity, and in the rational or decimal num-
ber fields takes on values between 0 and 1, with 0 oc-
curring when lines are parallel and 1 occurring when 
lines are perpendicular. Forty-five degrees becomes a 
spread of 1/2, while thirty and sixty degrees become 
respectively spreads of 1/4 and 3/4. What could be 
simpler than that? (Wildberger, 2005: 13).  

CD can also be measured to be used for the calcu-
lation of EF, the lateral offset from the previous direc-
tion, based on the similarity of the triangles ACD and 
AEF. The graphical solution of a scaled drawing on a 
board, as suggested by Riedweg (2005: 45), seems 
more realistic than the geometric design in full scale 
on a horizontal plane on one of the extensive beaches 
near the ancient city as suggested by Zambas (2017: 
136). 

 
Figure 8: Possible application of Thales’ theorem for the measurement of “angles” 

along the tunnel’s crooked course. 

3.3 The crossing maneuver and the stone bosses 

A peculiar class of quasi measuring marks, not ap-
plied with paint and quite different from the rest ones 
are stone bosses protruding from the center of the gal-
lery roof; they are up to 20 cm in height, at irregular 
distances from one to forty meters (Kienast, 1995: 
163). Remarkably, they occur only along the meeting 
region of both branches, but their use and meaning 
are not clear.  

In the northern branch there are nine bosses which 
lie along a smooth sigmoid path close to hearing dis-
tance from the southern branch, indicating self-reli-
ance in the success of breakthrough and accurate sur-
veying control. Instead of rushing to cross the south-
ern branch along a shorter straight path, a gentle but 
longer maneuver was followed aiming at crossing at 
a right angle the deviated southern branch, as accu-
rately as if they could observe it. This is clearly 
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sketched by Fabricius at the lower right corner in Fig. 
4, as well as in Fig. 9. We believe that this maneuver 
was not accidental but planned based on carefully cal-
culated measurements and achieved by following ex-
act tunneling instructions. 

There are also five bosses of the southern branch 
which lie on a straight line but are not needed for 
keeping the alignment (Fig. 9). It is therefore ques-
tioned whether they encrypt a message. Possibly, the 

arrangement of the bosses B2, B3 and B4 in the south-
ern branch could indicate division according to the 
golden rule ratio of 1.618. The ratios Β2Β4/Β3Β4 and 
Β3Β4/Β2Β are approximately equal to this value of 
1.618. In fact, it is measured on Kienast’s longitudinal 
southern plan that Β2Β3 = 18.79 m και Β3Β4 = 30.35 
m, so that Β2Β4/Β3Β4= 1.619 and Β3Β4/Β2Β3= 1.615. 
The arrangement of the bosses might be unintended, 
but further investigation is recommended of their en-
igmatic nature and function. 

 

Figure 9: Stone bosses B1 to B5 along the southern branch of the tunnel reproduced from Kienast’s longitudinal plan 3b. 

 

3.4 Length unit and the tunnel length 

The measuring interval of marks associated with 
ancient tunnel measurements described by Kienast 
(1995: 151 and 156), normally corresponds to 40 and 
120 length units for the first and the second system of 
ancient measurements, respectively. However, some 
of the intervals are significantly longer or shorter, de-
viate from the above integers and because of that di-
vision of the calculated average interval by 40 or 120 
for the estimation of the length unit can be mislead-
ing. We preceded to the estimation of the length unit 
from the measurements of the system 2, considered to 
be more accurate and consistent, taken after the tun-
nel breakthrough.  

The estimation of the length unit was attempted 
through a statistical procedure designed especially 
for this case. It was based on the assumption that dis-
tances between measurement points are simply mul-
tiples of the length unit, the cubit. A deviation-error 
index was devised, and the length unit estimate was 
taken as the one that minimizes this deviation index. 
The distance of each pair was divided by an assumed 
value of length unit in the range 0.5 to 0.55 m. Then, 
the nearest integer to this ratio was calculated and 
multiplied by the assumed length unit. The actual 
pair distance was subtracted from this product and 
squared for all pairs of marks; finally, the sum of the 
squares was calculated, and this calculation was re-
peated stepwise for consecutive values of assumed 

cubit length. The assumed value of length unit with 
the minimum sum of squared differences was taken 
as the best estimate of length unit. The procedure is 
similar in principle to the cosine quantogram de-
scribed by Pakkanen (2013: 16), based however di-
rectly on the measurements. In this way the value of 
0.52 m was calculated for the length unit of the system 
2 (Fig. 10).  

It is noted that both modern tunnel measurements 
(Kienast, 1995: 42; Zambas 2017: 122), have common 
conventional zero point taken on the lowest step of 
the modern stair of the portal in the north. Based on 
the measuring marks and the measuring intervals, the 
zero points of measurements used in antiquity were 
estimated as a step for addressing the question 
whether the tunnel’s length was already estimated 
before tunneling works. It was calculated that the 
northern zero point of measurements in antiquity was 
about 24 m from the tunnel mouth and about 10.8 m 
from the southern one.  

Next, the straight distance between the zero points 
of the measuring marks is estimated. This distance, 
from the north to the south, would be 27.46+ 1002.8 
+10.82 = 1041.08 m. It is remarkably close to 
50×40×0.52= 1040 m, where 0.52 m is the previously 
estimated length unit of cubit. Unless this round 
value is a rare coincidence, it is envisaged that the tar-
geted distance between the end zero points in antiq-
uity was defined in advance equal to 2000 Samian cu-
bits. 
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Figure 10: Diagram for the estimation of the length unit from the measuring marks of the system 2; the best estimate is 
taken at the points 0.52 m of minimum error index. 

 

3.5 Possible application of the Pythagorean the-
orem in land surveying 

The accuracy in positioning the tunnel mouths is 
astonishing and doubtlessly confirmed by modern 
surveying, but difficult to explain. It is generally en-
visaged that most likely tunneling was contemporary 
with the construction of the city walls or marginally 
posterior and this could have facilitated surveying. 
Towers of the circuit walls near the crest of the Kastro 
Hill for example could have been used for the align-
ment between the candidate sites for the mouths 
along a rocky profile.  

On the other hand, elevation measurements could 
proceed along another route at a second stage, after 
the alignment, along smoother paths such as AN-AS 
or BA-BS as shown in Fig. 11. Defining the level inde-
pendently of the alignment has been also suggested 
by Rihll and Tucker (2003: 411). It would suffice to 
measure the elevation difference between the mouth 

sites N and S and a third convenient point like A or B. 
Along these paths the Kastro crest is bypassed, the el-
evation difference is smaller and the topography is 
smoother. Furthermore, the tunnel length could also 
have been calculated based on the length measure-
ment of a shorter interval, like the perpendiculars 
AA΄ or BB’ to the tunnel alignment. Accurate length 
measurements would be convenient by scaffolding. 
By the application of the Pythagorean theorem in 
combination with similar triangles the tunnel length 
and the elevation difference at N and S could have 
been calculated. After all, the successful break-
through of the tunnel through the “triangular”devia-
tion indicates the ability of surveying along slalom 
routing. No doubt, the achieved accuracy in position-
ing the mouths in advance and the well-designed ma-
neuver at the crossing point indicate the involvement 
of a mathematical mind supporting Eupalinos’ engi-
neering skills. 
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Figure 11: Proposed method of surface surveying for measuring AA΄ or BB΄, angle φ and elevation difference between the 
tunnel ends N and S and convenient points A or B, projected on ESRI’s satellite images in Greek coordinates (EGSA). 

 

4. DISCUSSION 

4.1 On the temples’ design 

From the preceding analysis on the architectural 
layout of Late Archaic temples, the systematic appli-
cation of a broad variety the Pythagorean triples is 
confirmed as a basic design tool both in Samos and 
Magna Graecia, accomplished in periods of Pythago-
ras’ influential presence there. The procedure was 
fully developed at the Heraion temple of Samos in the 
sixth century BC and the following basic steps are rec-
ognized.  

1. Selection of a cardinal Pythagorean rectangle as 
a model for the temple outline, which could be either 

the crepis or the stylobate or the colonnade; in the 
latter case the intercolumnar axes or the outer 
colonnade can alternatively be used, as at the Heraion 
temple. 

2. Selection of a modulus for designing a grid, 
square or rectangular, related mostly with the 
interaxial column interval.  

3. Subdivision of the model plan into smaller either 
Pythagorean or harmonic rectangles. 

4. Correlation of the plan proportions to the 
elevation by extending the plan grid vertically or 
through a modified vertical grid on another 
Pythagorean rectangle. In this way the building 
proportions are interconnected in three dimensions. 
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5. Calculation of the actual dimensions from the 
model, based on a scale factor. 

6. Accurate positioning of the Pythagorean 
rectangles constrained by the dimensions of the sides 
and the diagonals, along with implementation of the 
grid and delineation of architectural elements in situ. 

The described basic method was fully developed in 
Pythagoras’ time and perfected in the Hellenistic 
times, when more emphasis was put perhaps on the 
harmonic proportions.  

4.2 On the Pythagorean triples in Babylonian 
mathematics 

Neugebauer and Sachs (1945) deciphered and re-
vealed the importance of mathematical Babylonian 
cuneiform tablets and concluded that the Plimpton 
322 tablet, dated in the early second millennium BC, 
listed Pythagorean triples. More specifically, accord-
ing to Neugebauer (1951: 40) there is a strong indica-
tion that the fundamental formula for the construc-
tion of triples of Pythagorean numbers was known to 
the Babylonians.  

The tablet was originally larger, it was broken, and 
four columns of numbers are only preserved. In the 
second and third columns the numbers are Pythago-
rean, integer solutions b and d of the equation:  

 d2 = b2 + l2 

whereas the number of the fourth column corre-

sponds to 
𝑑2

𝑙2  , where d the hypotenuse and l the long 

leg. 
Neugebauer obtained the Pythagorean triples (a, b, 

c) of the tablet from the generating functions: 
 a = p2 + q2, b = p2- q2 and c=2pq 

where p and q are arbitrary integers subject only to 
the condition that they are relatively prime, not sim-
ultaneously odd and p > q. Neugebauer (1957: 42) as-
sumed that “this is indeed the formula which we 
needed for our explanation of the text dealing with 
Pythagorean numbers”. However, this is Euclid’s ap-
proach for the generation of Pythagorean triples, in-
troduced much later.  

Neugebauer and Sachs’ views were disputed soon 
by Bruins (1949: 629) who proved that a simpler inter-
pretation is possible, in which the production of Py-
thagorean numbers is feasible by using only one pa-
rameter, instead of the couple (p, q) of independent 
integers, by means of reciprocal sexagesimal numbers 
derived from Babylonian tablets.  

Friberg (1981: 284) verified that the values listed in 
the Plimpton 322 tablet are precisely the ones that can 
be obtained from reciprocal pairs, under the condi-
tion that the reciprocal numbers t and 𝑡′ are “regular”, 
that is in the form: t = 2α3β5γ where α, β, γ are integers 
not necessarily positive. Friberg went further to gen-
erate an arbitrarily large set of admissible values t, by 

letting the parameter t and its reciprocal t’ as t=s/r 
and t’=r/s vary within a bounded strip in the (r, s) 
plane. So, Friberg, like Neugebauer, envisaged in the 
tablet “anachronistic” mathematics supposedly to be 
known by the Babylonians. 

To clarify this point further and make this discrep-
ancy better understood let us refer to the tablet YBC 
6967 the calculations of which fortunately are de-
scribed in the tablet. Høyrup (1990: 262-266) inter-
preted the impressive underlying “cut-and-paste” or 
“naive” geometric methodology on the solution of the 
system of equations:  

xy=60 and x-y = 7. 
The problem deals with a pair of numbers (12 and 

5, members of the Pythagorean triple 5, 12, 13) and the 
solution is given by a clever geometrical interpreta-
tion; any modernizing algebraic solution would be 
therefore irrelevant and out of historical context.  

Plimpton 322 tablet has been and continues to the 
be subject of intensive and multidisciplinary research, 
but a few references only closely related to our topic, 
are compiled here. Robson (2001: 167) compared and 
evaluated in a broader mathematico-historical con-
text both alternative interpretations, Neugebauer’s 
proposal of generating functions with two parameters 
and Bruins’ approach based on one parameter and re-
ciprocal sexagesimal numbers from tablets. She based 
her judgement on certain criteria, the first of which 
was the historical sensitivity and the condition that 
“the theory should respect the historical context of 
Plimpton 322 and not impose conceptually anachro-
nistic interpretations on it” (Robson, 2001: 176). She 
considered the first column in decimal notation as the 
ratio d2/l2 or b2/l2, depending on the acceptance or not 
of the supposed missing unit of the broken part of the 
tablet, where d is the hypotenuse, l the long side and 
b the short one. She also transliterated a grammati-
cally and mathematically meaningful heading for 
Column I, as “The takiltum of the diagonal from 
which 1 is torn out, so that the short side…”. 

We believe that this heading, as translated above, 
is a concise expression of the Babylonian “diagonal 
rule”, the Pythagorean theorem in modern terminol-
ogy, transliterated in our algebraic notation as: 

 d2/l2-1= b2/l2 

a genuinely beautiful equation in normalized nota-
tion. 

 Robson (2001: 167) showed that the Neugebauer’s 
widespread theory of generating functions cannot be 
correct. She provided supporting evidence for an al-
ternative way of triples generation using regular re-
ciprocal pairs and applying common Babylonian 
mathematics. She also proposed a possible comple-
tion of the 15 rows of the tablet with the missing col-
umns (Robson, 2001: 185-186).  
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As to the purpose of the tablet, Robson’s remarks 
are enlightening (2002: 118): “Plimpton 322, analyzed 
solely as a piece of mathematics, looked very modern, 
millennia ahead of its time, incomparably more so-
phisticated than other ancient mathematical docu-
ments. But if we treat Plimpton 322 as a cuneiform 
tablet that just happens to have mathematics on it, a 
very different picture emerges. We see that it is a 
product of a very particular place and time, heavily 
dependent on the ancient scribal environment for its 
physical layout as a table, its mathematical content, 
and its function as a teacher’s aid. All the techniques 
it uses are widely attested elsewhere in the corpus of 
ancient Mesopotamian school mathematics. In this 
light we can admire the organizational and arithmet-
ical skills of its ancient author but can no longer treat 
him as a far-sighted genius. Any resemblance Plimp-
ton 322 might bear to modern mathematics is in our 
minds, not his”. Incidentally, according to Robson 
(2002: 111), the tablet was written by someone famil-
iar with the temple administration in the Mesopota-
mian city of Larsa in around 1800 BC.  

In our opinion, the unique Plimpton 322 tablet 
could be of practical significance too, since the triples 
offer a good basis for the design of Pythagorean rec-
tangles, useful for the layout of grids in architecture 
and the subdivision of land parcels, as well as for the 
layout of inclined surfaces. 

4.3 On the Pythagorean triples of the temples ex-
amined 

We continue with the investigation of the genera-
tion method of the Pythagorean triples of the temples 
examined, starting as usual, from the Pythagorean 
equation with a<b<c: 

a2+b2 = c2 and for a=1 it is: 

1= c2-b2 = (c+b)(c-b), c+b = λ and c-b = 1/λ. 

b= 
1

2
 (λ - 1/λ) and c= 

1

2
 (λ + 1/λ).  

For a supposed Pythagorean triple A<B<C, λ can 

be calculated from either of the equations 𝜆 2 -2
𝐵

𝐴
 𝜆 - 1 

=0 and/or λ2 -2
𝐶

𝐴
 𝜆 + 1 =0  

If λ can be expressed as a fraction of integers R1 and 
R2, then  

λ = 
𝑅1

𝑅2
 𝑎𝑛𝑑 b =  

𝜆2−1

2𝜆
 =

𝑅1

𝑅2
−

𝑅2

𝑅1

2
 and 𝑐 =  

𝜆2+1

2𝜆
 =

𝑅1

𝑅2
+

𝑅2

𝑅1

2
  

The reduced triad of rational numbers:  
1

2
{ 

𝑅1

𝑅2
+

𝑅2

𝑅1
}, 

1

2
{ 

𝑅1

𝑅2
−

𝑅2

𝑅1
} and 1 

satisfies the Pythagorean equation because: 

 
1

4
{ 

𝑅1

𝑅2
+

𝑅2

𝑅1
}2 = 

1

4
{ 

𝑅1

𝑅2
−

𝑅2

𝑅1
}2 + 1 

Incidentally, this is the algebraic expression of a 
Babylonian algorithm proven by cut-and-paste by Si-
moson (2019). 

Then A=R1R2, B=bA and C=cA, where: 

B=
1

2
 { 

𝑅1

𝑅2
−

𝑅2

𝑅1
}R1R2 = 

1

2
{(R1)2-(R2)2} 

C=
1

2
{ 

𝑅1

𝑅2
+

𝑅2

𝑅1
}R1R2 = 

1

2
{(R1)2+(R2)2}  

So, A, B, C make up a Pythagorean triple because 
R1, R2, A, B and C are integers and A2+B2=C2.  

The above equations are actually Euclid’s formulas 
and can be used for the calculation of Pythagorean tri-
ples for an arbitrary pair of integers (R1, R2). They 
were applied to the triples calculated at the examined 
temples and the relevant coefficients c and b are 
shown in the Table 3. It is found that if either R1 or R2 
is an even integer, then A=2R1R2 . It is worth noting 
that both methods, the Euclid’s formulas and the sim-
pler approach of reciprocal pairs produce identical re-
sults. It is therefore concluded that Neugebauer’s per-
sistence on the advanced formulas of generating func-
tions is an unnecessary anachronism. 

Table 3: Validation of the Pythagorean triples  of the ancient temples investigated. 

Pythagorean 
triple (A, B, C) 

Temple 
 

λ=
𝑅1

𝑅2
 

(R1, R2) 

𝑐 = 

 

𝑅1
𝑅2 +

𝑅2
𝑅1

2
  

b = 
𝑅1
𝑅2 −

𝑅2
𝑅1

2
 

115, 252, 277 Heraion 23/5 (23, 5) 2.408696 2.191304 

105, 208, 233 Heraion 21/5 (21, 5) 2.219048 1.808696 

48, 55, 73 Heraion 8/3 (8, 3) 1.520833 1.145833 

5,12,13 
Heraion 
Athena, Paestum 

5 (5, 1) 2.6 2.4 

8,15,17 Trapeza, Aigialeia 4 (4, 1) 2.125 1.875 

7,24,25 
Athena, Paestum 
Didyma 

7 (7, 1) 3.571429 3.428571 

20,21,29 Didyma 5/2 (5, 2) 1.45 1.05 

16,63,65 Didyma 8 (8, 2) 4.0625 3.9375 

The Pythagorean triples of the temples in Table 3 
are not included in the fifteen triples of the Plimpton 
322 tablet and only three of them - (5, 12, 13), (7, 24, 

25) and (8, 15, 17) - are among the 38 triples of the ex-
tended version calculated by Simoson (2019). This can 
be considered as a strong indication that the Late Ar-
chaic Pythagorean triples in the Greek temples were 
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produced independently and did not originate from 
the Plimpton 322, the unique known tablet with Py-
thagorean triples as remarked by Robson (2002: 108).  

4.4 Hints on Pythagoras’ contribution to the 
field of mathematics 

In recent scholarship the consensus view on the Py-
thagorean theorem has received strong challenges, 
which in agreement with Neugebauer’s views are 
best exemplified in the Stanford Encyclopedia of Phi-
losophy (2018), summarized as following. “There is 
evidence that Pythagoras valued relationships be-
tween numbers such as those embodied in the so-
called Pythagorean theorem, though it is not likely 
that he proved the theorem. All that tradition ascribes 
to Pythagoras, then, is discovery of the truth con-
tained in the theorem. The truth may not have been in 
general form but rather focused on the simplest such 
triangle (with sides 3, 4 and 5), pointing out that such 
a triangle and all others like it will have a right angle. 
Modern scholarship has shown, moreover, that long 
before Pythagoras the Babylonians were aware of the 
basic Pythagorean rule and could generate Pythago-
rean triples, although they never formulated the the-
orem in explicit form or proved it. Thus, it is likely 
that Pythagoras and other Greeks first encountered 
the truth of the theorem as a Babylonian arithmetical 
technique. It is possible, then, that Pythagoras just 
passed on to the Greeks a truth that he learned from 
the East. All that this tradition ascribes to Pythagoras, 
then, is discovery of the truth contained in the theo-
rem. The truth may not have been in general form but 
rather focused on the simplest such triangle (with 
sides 3, 4 and 5), pointing out that such a triangle and 
all others like it will have a right angle. What emerges 
from this evidence, then, is not Pythagoras as the mas-
ter geometer, who provides rigorous proofs, but ra-
ther Pythagoras as someone who recognizes and cel-
ebrates certain geometrical relationships as of high 
importance”.  

As expected, Neugebauer was fully aware of the 
level of the Babylonian mathematics when writing 
that “in spite of the numerical and algebraic skill and 
in spite of the abstract interest which is conspicuous 
in so many examples, the contents of Babylonian 
mathematics remained profoundly elementary. Baby-
lonian mathematics never transgressed the threshold 
of prescientific thought. It is only in the last three cen-
turies of Babylonian history and in the field of math-
ematical astronomy that the Babylonian mathemati-
cians or astronomers reached parity with their Greek 
contemporaries” (Neugebauer, 1957: 48).  

However, unjustifiably, he degraded the contribu-
tion of early Greek philosophers in mathematics, as 
inferred from his comments (1957: 148, 149, 152). 

 “It seems to me evident, however, that the tradi-
tional stories of discoveries made by Thales or Py-
thagoras must be discarded as totally unhistorical”. 

 “The elementary theory of numbers, however, 
may or may not eventually be based on much older 
oriental material. I do not doubt that any connection 
with the name of Pythagoras is purely legendary and 
of no historical value”. 

 “I think that it is evident that Plato's role has 
been widely exaggerated. His own direct contribu-
tions to mathematical knowledge were obviously 
nil”.  

It is commonly repeated that Pythagoras’ theorem 
was already known in Mesopotamia in 1500 BC and 
Leonid Zhmud (2003) meaningfully notes in his re-
view of Riedweg’s book “Pythagoras. Leben, Lehre, Na-
chwirkung” that Riedweg (2002) mentions this twice. 
Nevertheless, Zhmud convincingly remarks that in 
fact, what the Babylonians knew was not a general ge-
ometrical proposition, let alone its deductive proof, 
but only an empirical arithmetic formula for some Py-
thagorean triples (i.e. 3, 4, 5; 5, 12, 13, etc.)”.  

Even more enlightening on that is Burkert (1972: 
401), in his monumental book, in a section entitled 
“Did the Pythagoreans lay the foundations of Greek 
mathematics?” he notes that “as pre-Greek mathe-
matics has been rediscovered in Egyptian papyri and 
Babylonian clay tablets, a clearer light has been 
thrown on the outstanding achievement of the Greeks 
in the development of pure mathematics. The Babylo-
nians had made considerable progress in the accumu-
lation of detailed knowledge, in practical calculation, 
and in the solution of even rather complicated prob-
lems in arithmetic; beyond question, the Greeks had 
much to learn from them. But it was always single 
problems they were concerned with, making use of 
certain "recipes," without any theoretical explanation 
or even an attempt at proof; we cannot even be certain 
that the Babylonians formulated theorems in general 
terms. Some of the "recipes" or formulas are inexact, 
but this did not matter as long as they provided a 
practically useful approximation. Only with the ad-
vent of Greek geometry do we find the demand for 
generalized and stringent proof, for a deductive sys-
tem based on axioms and postulates. This is the sys-
tem presented to us in the Elements of Euclid, model 
which until the nineteenth century seemed not to re-
quire any essential improvement. All later achieve-
ments, including those of the Indians and the Arabs, 
build on the foundations laid by the Greeks”. 

On the query “Who discovered the Pythagorean 
theorem?” Meera Nanda (2016: 47) concluded that: 
“the geometric relationship described by this theorem 
was discovered independently in many ancient civili-
zations. The likely explanation is that the knowledge 
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of the relationship between sides of a right-angle tri-
angle emerged out of practical problems that all civi-
lizations necessarily face, namely, land measurement 
and construction of buildings – buildings as intricate 
as the Vedic fire altars, as grand as the Pyramids, as 
functional as the Chinese dams and bridges, or as 
humble as simple dwellings with walls perpendicular 
to the floor”. As summarized by Nanda (2016: 21) 
“The first recorded evidence for the Pythagorean con-
jecture dates back to some 1800 years BCE and it 
comes from Mesopotamia, the present-day Iraq. The 
first proof comes from the Chinese, preempting the 
Euclidean proof by a couple of centuries, and the In-
dian proof by at least 1000 years. Even though Py-
thagoras was not the first to discover and prove this 
theorem, it does not diminish his achievement. He re-
mains an extremely influential figure not just for his-
tory of mathematics, but history of science as well. Py-
thagoras and his followers were the “first theorists to 
have attempted deliberately to give the knowledge of 
nature a quantitative, mathematical foundation”. Gi-
ants of the Scientific Revolution, including Johannes 
Kepler and Galileo Galilei walked in the footsteps of 
Pythagoras. 

However, the gap between a practical rule and a 
theorem is huge and Exarchakos (2006: 92) is right to 
remark that there is no theoretical approach in the 
Babylonian mathematics, nor a general proposal 
proven on logical reasoning to be considered as a the-
orem. We believe therefore that what was discovered 
in many ancient civilizations was a practical rule, the 
diagonal rule in the case of the Babylonians, but not a 
theorem embodied in a general theoretical system. 

On this point Angelika-Nikita (2018: 61) remarks 
that” The Greeks understood something that had 
somehow eluded the Egyptians and Babylonians: the 
importance of mathematical rigor. Rigor was the thor-
oughness and attention to detail for improving accu-
racy. For example, ancient Egyptians, equated the 
area of a circle to the area of a square with sides equal 
to 8/9 of the circle's diameter. According to this cal-
culation, the value of the mathematical constant π is 
256/81. Though it is a highly accurate calculation 
(around 0.5% error), it is mathematically incorrect. 
However, for the purposes of Egyptian engineering, 
this error was insignificant. But, ignoring this 0.5% er-
ror neglects a fundamental property of the true value 
of π, that no fraction can express it, as it is an irrational 
number”. 

The real – and path-breaking – contribution of Py-
thagoras was the fundamental idea that nature can be 
understood through mathematics. He was the first to 
imagine the cosmos as an ordered and harmonious 
whole, whose laws could be understood by under-
standing the ratios and proportions between the con-
stituents. It was this tradition that was embraced by 

Plato, and through Plato became a part of Western 
Christianity, and later became a fundamental belief of 
the Scientific Revolution expressed eloquently by 
Galileo: “The Book of Nature is written in the lan-
guage of mathematics” (Nanda, 2016: 33). 

It is similarly underlined by Burov and Burov 
(2015) that when Galileo stated this, he was express-
ing the ancient Pythagorean credo. The same can be 
said about Dirac, whose fundamental belief was that 
“the laws of nature should be expressed in beautiful 
equations”. Our universe is special not only because 
it is populated by living and conscious beings but also 
because it is theoretizable by means of elegant math-
ematical forms, both rather simple in presentation 
and extremely rich in consequences. Such a special 
universe deserves a proper term, and we do not see a 
better choice than to call it Cosmos or to qualify it as 
Pythagorean, in honor of the first prophet of theoreti-
cal cognition, who coined such important words as 
cosmos (order), philosophy (love of wisdom), and 
theory (contemplation). 

5. EPILOGUE  

Although Pythagoras’ involvement in the design of 
temples cannot be directly proved, it is a reasonable 
assumption, given the crucial and innovative applica-
tion of the Pythagorean triples at the Heraion temple 
during his period in Samos. The foundation of the sec-
ond peripteros temple of Heraion started during Py-
thagoras’ time in Samos. The early application of the 
Pythagorean triples is revealed in the architectural 
design of the huge temple, based on a mathematical 
model thanks to which a coherent system of propor-
tions was realized. For geometrical accuracy, a grid 
was used, and dimensioning was based on a common 
module for the various parts of the monument. The 
Heraion temple resembles a demonstration project of 
the application of Pythagorean triples which are not 
related to the triples of the Old Babylonian Plimpton 
322 tablet.  

A Pythagorean rectangle was also recognized at 
the Trapeza temple, built in Pythagoras’ time at the 
Achaean Metropolis of Croton. The same process of 
design based on Pythagorean triples, in particular in 
three dimensions, is also confirmed in the Athena 
temple at Paestum during the period of the greatest 
philosophical influence of Pythagoras in Magna Grae-
cia. His influence here was dual, geometric, and aes-
thetic, thanks to the combined application of mathe-
matics and harmonic proportions inspired from Py-
thagoras’ philosophy. The dual geometric-harmonic 
design of temples was fully developed in Pythagoras’ 
time, starting from the Heraion temple in Samos, and 
his philosophy of proportions, amalgamated perhaps 
with Platonic ideas, prevailed in later times until the 
present.  
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The Eupalinos’ aqueduct is a revolutionary work in 
many aspects, accomplished while Pythagoras’ was 
in Samos. The surveying problems of the tunnel were 
examined in this article, to evaluate the level of math-
ematics involved. The complications of the work and 
the astonishing accuracy achieved would have been 
impossible without the application of mathematics 
and proper instrumentation; in this regard, it is re-
minded that the Architect Theodorus of Samos is 
credited with the invention of several measuring in-
struments. It is demonstrated that in addition to the 

Eupalinos’ engineering skills a mathematical mind 
was required for the accomplishment of the work. 

As to the Plimpton 322 tablet, it is concluded that 
the method of reciprocal pairs is the most convenient 
for the generation of the Pythagorean triples. Besides 
the tablet application in teaching, a practical use is 
also envisaged. It is worth noting that both methods, 
the Euclid’s formulas and the simpler method of re-
ciprocal pairs produce identical results. It is therefore 
concluded that Neugebauer’s persistence on the ad-
vanced formulas of generating functions is an unnec-
essary anachronism. 
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