Skip to main content

OPTIMIZING MODULAR PRODUCT-SERVICE SYSTEMS WITH CIRCULAR BIO-WASTE MATERIALS

By October 31, 2025January 17th, 2026Vol. 11.2

by Tong Zhou and Jungsik Jang

ABSTRACT

A transition to a circular economy will imply new methods, accompanied by the introduction of sustainable materials  and  service-based  functions  into  industries.  However,  effectively  integrating  bio-waste-based materials into modular product systems remains challenging due to trade-offs between cost, durability, and operational efficiency. An optimization version of the so-called Modular Product-Service Systems (MPSS) has been  developed  in  the  paper  to  replace  the  circular  bio-waste  materials  so  as  to  achieve  the  goal  of  the environmentally-sustainable operation and efficiency. It is stated that the modularity principles of products and prospects of regeneration of bio-waste resources facilitate the low value of lifecycle and environmental failure  and  high  share  of  resource  circularity,  flexibility  of  the  service,  and  reusability  of  components. Considering   degradation   rates,   service   schedules,   and   logistical   capacities,   a   Mixed-Integer   Linear Programming (MILP) model is designed to optimize the selection, allocation, and maintenance of bio-waste-based  product  modules.  In  an  attempt  to  solve  the  conflicting  goals,  the  framework  incorporates  both  Life Cycle Assessment (LCA) and Multi-Criteria Decision-Making (MCDM) on the basisof the Technique of Order Preference by Similarity to Ideal Solution (TOPSIS). This form of integrated approach is capable of providing informed evaluation of trade-offs among economic, ecological and operational standards. The applicability of the  model will  be  realized  with  aid  of  a  case  study  in  the  modular  furniture  sector  that  lower  the  cost  of furniture   materials   using   farming   bio-wastes   without   compromising   on   the   furniture   durability   and functionality  in  terms  of  numbers  of  years  of  service.  The  case  study  results  demonstrate  that  the  proposed MPSS framework achieves superior financial  returns  (ROI 175%, breakeven by  Year 6), extended service  life (7.5 years), and higher circularity (65%) compared to benchmark methods, while balancing cost–carbon trade-offs  through  integrated  LCA–MCDM  evaluation.  These  outcomes  confirm  its  effectiveness  in  delivering economically viable, environmentally sustainable, and operationally flexible solutions for circular.

pdf

Download pdf

Loading

Leave a Reply